Skip to main content
Log in

Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Skeletal unloading induced by disuse or immobilization causes a decrease in bone mass and strength. We investigated the relationship between whole-body vibration (WBV) and resistance exercise (RE) in preventing bone loss induced by 8-week hindlimb unloading in young male rats. Sixty male Wistar rats were assigned randomly to 6 groups: age-matched control group (CON, n = 10), hindlimb unloading group (HU, n = 10), hindlimb unloading + standing group (HU + ST, n = 10), hindlimb unloading + WBV group (HU + WBV, n = 10), hindlimb unloading + RE group (HU + RE, n = 10) and hindlimb unloading + WBV + RE group (HU + WBV + RE, n = 10). After 8-week hindlimb unloading, micro-CT scanning and three-point bending test were performed in the femur. Sera were collected for analysis of bone formation and resorption markers. Compared with HU group, WBV, RE and the combination of WBV and RE (WBV + RE) significantly improved (P < 0.01) one repetition maximum (1RM) (expressed as the percentage change from baseline, HU: −23%, HU + WBV: 21%, HU + RE: 48%, HU + WBV + RE: 51%), and maintained (P < 0.05) cancellous volumetric bone mineral density (vBMD) and trabecular structure. No difference of cortical vBMD was found among all groups (P > 0.05). WBV had no effects on biomechanical properties of the femur diaphysis (P > 0.05). RE and WBV + RE significantly increased maximum load and cross-sectional moment of inertia of the femur diaphysis in hindlimb unloading rats (P < 0.05). There was an interaction between WBV and RE in improving cancellous bone. These results demonstrate that WBV and RE interactively maintain cancellous structure and vBMD, and independently partially mitigate the reduction of bone strength in long-term hindlimb unloading rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram AC, Keller TS, Spengler DM (1988) The effects of simulated weightlessness on bone biomechanical and biochemical properties in the maturing rat. J Biomech 21(9):755–757

    Article  PubMed  CAS  Google Scholar 

  • Apseloff G, Girten B, Walker M, Shepard D, Krecic ME et al (1993a) Aminohydroxybutane bisphosphonate and clenbuterol prevent bone changes and retard muscle atrophy respectively in tail-suspended rats. J Pharmacol Exp Ther 264(3):1071–1078

    PubMed  CAS  Google Scholar 

  • Apseloff G, Girten B, Weisbrode S, Walker M, Stern L et al (1993b) Effects of aminohydroxybutane bisphosphonate on bone growth when administered after hind-limb bone loss in tail-suspended rats. J Pharmacol Exp Ther 267(1):515–521

    PubMed  CAS  Google Scholar 

  • Barou O, Lafage-Proust MH, Martel C, Thomas T, Tirode F et al (1999) Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses. J Pharmacol Exp Ther 291(1):321–328

    PubMed  CAS  Google Scholar 

  • Belavy DL, Beller G, Armbrecht G, Perschel FH, Fitzner R, et al. (2010) Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int. doi:10.1007/s00198-010-1371-6

  • Bemben DA, Palmer IJ, Bemben MG, Knehans AW (2010) Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 47(3):650–656

    Article  PubMed  Google Scholar 

  • Bikle DD, Halloran BP (1999) The response of bone to unloading. J Bone Miner Metab 17(4):233–244

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield SA, Allen MR, Hogan HA, Delp MD (2002) Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats. Bone 31(1):149–157

    Article  PubMed  CAS  Google Scholar 

  • Carvalho A, Louzada M, Riso N (2007) Hindlimb unloading producing effects on bone biomechanical properties in mature male rats. Braz J Morphol Sci 24(3):175–179

    Google Scholar 

  • Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  PubMed  Google Scholar 

  • Fluckey JD, Dupont-Versteegden EE, Montague DC, Knox M, Tesch P et al (2002) A rat resistance exercise regimen attenuates losses of musculoskeletal mass during hindlimb suspension. Acta Physiol Scand 176(4):293–300

    Article  PubMed  CAS  Google Scholar 

  • Garber MA, McDowell DL, Hutton WC (2000) Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model. Aviat Space Environ Med 71(6):586–592

    PubMed  CAS  Google Scholar 

  • Hubal M, Ingalls C, Allen M, Wenke J, Hogan H, Bloomfield S (2005) Effects of eccentric exercise training on cortical bone and muscle strength in the estrogen-deficient mouse. J Appl Physiol 98(5):1674–1681

    Article  PubMed  CAS  Google Scholar 

  • Humphries B, Fenning A, Dugan E, Guinane J, MacRae K (2009) Whole-body vibration effects on bone mineral density in women with or without resistance training. Aviat Space Environ Med 80(12):1025–1031

    Article  PubMed  Google Scholar 

  • J rvinen TLN, Kannus P, Siev nen H, Jolma P, Heinonen A, J rvinen M (1998) Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 13(9):1475–1482

    Article  Google Scholar 

  • Johnson CD, Lucas EA, Hooshmand S, Campbell S, Akhter MP et al. (2008) Addition of fructooligosaccharides and dried plum to soy-based diets reverses bone loss in the ovariectomized rat. Evid Based Complem Alternat Med. doi:10.1093/ecam/nen050

  • Kodama Y, Nakayama K, Fuse H, Fukumoto S, Kawahara H et al (1997) Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. J Bone Miner Res 12(7):1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Legerlotz K, Schjerling P, Langberg H, Brüggemann GP, Niehoff A (2007) The effect of running, strength, and vibration strength training on the mechanical, morphological, and biochemical properties of the Achilles tendon in rats. J Appl Physiol 102(2):564–572

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wang H, Chen W, Tan C, Ding Y, Zhu Y, Wang D, Ma H, Jiang S, Wang J (2011) Resistance exercise as countermeasure against bone loss in 8-week tail-suspended rat. Space Med Med Eng 24(1):5–8

    Google Scholar 

  • Matsumoto T, Nakayama K, Kodama Y, Fuse H, Nakamura T et al (1998) Effect of mechanical unloading and reloading on periosteal bone formation and gene expression in tail-suspended rapidly growing rats. Bone 22(5 Suppl):89S–93S

    Article  PubMed  CAS  Google Scholar 

  • Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92(4):1367–1377

    PubMed  Google Scholar 

  • Morey-Holton E, Globus RK, Kaplansky A, Durnova G (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10:7–40

    Article  PubMed  Google Scholar 

  • Notomi T, Lee SJ, Okimoto N, Okazaki Y, Takamoto T et al (2000) Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats. Eur J Appl Physiol 82(4):268–274

    Article  PubMed  CAS  Google Scholar 

  • Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T et al (2001) Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. J Bone Miner Res 16(1):166–174

    Article  PubMed  CAS  Google Scholar 

  • Oxlund B, Ørtoft G, Andreassen TT, Oxlund H (2003) Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 32(1):69–77

    Article  PubMed  CAS  Google Scholar 

  • Ozcivici E, Luu YK, Rubin CT, Judex S, Agarwal S (2010) Low-level vibrations retain bone marrow’s osteogenic potential and augment recovery of trabecular bone during reambulation. PLoS ONE 5(6):e11178

    Article  PubMed  Google Scholar 

  • Perrien DS, Akel NS, Dupont-Versteegden EE, Skinner RA, Siegel ER et al (2007) Aging alters the skeletal response to disuse in the rat. Am J Physiol Regul Integr Comp Physiol 292(2):R988–R996

    Article  PubMed  CAS  Google Scholar 

  • Rubin C, Lanyon L (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402

    PubMed  CAS  Google Scholar 

  • Rubin C, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15(12):2225–2229

    Article  PubMed  CAS  Google Scholar 

  • Rubin C, Turner A, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452

    Article  PubMed  CAS  Google Scholar 

  • Shaw SR, Zernicke RF, Vailas AC, DeLuna D, Thomason DB, Baldwin KM (1987) Mechanical, morphological and biochemical adaptations of bone and muscle to hindlimb suspension and exercise. J Biomech 20(3):225–234

    Article  PubMed  CAS  Google Scholar 

  • Swift JM, Nilsson MI, Hogan HA, Sumner LR, Bloomfield SA (2010) Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res 25(3):564–574

    Article  PubMed  Google Scholar 

  • Tan C, Su W, Ma C, Li Z, Wang H, Chen W, Ke Z, Zhang M (2010) Effects of whole body vibration on prevention of bone loss in 8-week tail-suspended male rats. IEEE 5:1823–1826

    Google Scholar 

  • Tanaka SM, Alam I, Turner CH (2002) Stochastic resonance in osteogenic response to mechanical loading. FASEB J 17(2):313–314

    PubMed  Google Scholar 

  • Turner C (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407

    Article  PubMed  CAS  Google Scholar 

  • Turner RT (2000) Physiology of a microgravity environment: invited review: what do we know about the effects of spaceflight on bone? J Appl Physiol 89(2):840–847

    PubMed  CAS  Google Scholar 

  • Uhthoff HK, Jaworski Z (1978) Bone loss in response to long-term immobilisation. J Bone Joint Surg Br 60(3):420–429

    PubMed  Google Scholar 

  • Vajda EG, Wronski TJ, Halloran BP, Bachus KN, Miller SC (2001) Spaceflight alters bone mechanics and modeling drifts in growing rats. Aviat Space Environ Med 72(8):720–726

    PubMed  CAS  Google Scholar 

  • van der Meulen MCH, Morey-Holton ER, Carter DR (1995) Hindlimb suspension diminishes femoral cross-sectional growth in the rat. J Orthop Res 13(5):700–707

    Article  PubMed  Google Scholar 

  • von Stengel S, Kemmler W, Engelke K, Kalender WA (2011) Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporos Int 22(1):317–325

    Article  Google Scholar 

  • Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z (2004) Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 19(3):360–369

    Article  PubMed  Google Scholar 

  • Weinreb M, Rodan G, Thompson D (1989) Osteopenia in the immobilized rat hind limb is associated with increased bone resorption and decreased bone formation. Bone 10(3):187–194

    Article  PubMed  CAS  Google Scholar 

  • Wenger KH, Freeman JD, Fulzele S, Immel DM, Powell BD et al (2010) Effect of whole body vibration on bone properties in aging mice. Bone 47(4):746–755

    Article  PubMed  Google Scholar 

  • Westerlind KC, Fluckey JD, Gordon SE, Kraemer WJ, Farrell PA, Turner RT (1998) Effect of resistance exercise training on cortical and cancellous bone in mature male rats. J Appl Physiol 84(2):459–464

    PubMed  CAS  Google Scholar 

  • Whalen R, Carter D, Steele C (1988) Influence of physical activity on the regulation of bone density. J Biomech 21(10):825–837

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Ruiping She for her contribution to this research. This work was supported by Advanced Space Medico-Engineering Research Project of China, grant NO.SJ200802.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Li.

Additional information

Communicated by Susan A. Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 2.14 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Tan, C., Wu, Y. et al. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects. Eur J Appl Physiol 112, 3743–3753 (2012). https://doi.org/10.1007/s00421-012-2355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2355-3

Keywords

Navigation