Skip to main content

Advertisement

Log in

Determination of the lactate threshold by means of salivary biomarkers: chromogranin A as novel marker of exercise intensity

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study examined intra-individual variations in salivary lactate (sLac), alpha-amylase (sAA) and chromogranin A (sCgA) with reference to the accumulation of blood lactate (bLac) during incremental maximal exercise in swimmers. Samples of blood and saliva were collected simultaneously from 12 male professional athletes during an incremental test that consisted of eight series of 100 m in front crawl with increasing velocity (0.03 m  s−1 each) and 70-s intervals. The concentration of blood and salivary lactate was determined by an electro-enzymatic assay, whereas sAA and CgA were analysed by Western blotting. Inflection points in the concentration of bLAc, sLac, sAA and CgA were found in all subjects. The accumulation of lactate in saliva followed the same pattern observed in blood with a high correlation between the two (r = 0.91). Similar results were observed between the dynamics of sAA (r = 0.81) and sCgA (r = 0.82) in relation to bLac. These findings support the usefulness of saliva for the determination of the lactate threshold and provide the first demonstration of sCgA as a novel marker of exercise intensity in well-trained men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allgrove JE, Gomes E, Hough J, Gleeson M (2008) Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci 26:653–661. doi:10.1080/02640410701716790

    Article  PubMed  Google Scholar 

  • Binder RK, Wonisch M, Corra U et al (2008) Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Cardiovasc Prev Rehabil 15:726–734. doi:10.1097/HJR.0b013e328304fed4

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calvo F, Chicharro JL, Bandrés F et al (1997) Anaerobic threshold determination with analysis of salivary amylase. Can J Appl Physiol 22:553–561

    Article  PubMed  CAS  Google Scholar 

  • Chatterton RT Jr, Vogelsong KM, Lu YC et al (1996) Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 16:433–448

    Article  PubMed  CAS  Google Scholar 

  • Chicharro JL, Legido JC, Alvarez J et al (1994) Saliva electrolytes as a useful tool for anaerobic threshold determination. Eur J Appl Physiol Occup Physiol 68:214–218

    Article  PubMed  CAS  Google Scholar 

  • Chicharro JL, Calvo F, Alvarez J et al (1995) Anaerobic threshold in children: determination from saliva analysis in field tests. Eur J Appl Physiol Occup Physiol 70:541–544

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira VN, Bessa A, Lamounier RPMS et al (2010) Changes in the salivary biomarkers induced by an effort test. Int J Sports Med 31:377–381. doi:10.1055/s-0030-1248332

    Article  PubMed  Google Scholar 

  • Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490

    Article  PubMed  Google Scholar 

  • Filaire E, Dreux B, Massart A et al (2009) Salivary alpha-amylase, cortisol and chromogranin A responses to a lecture: impact of sex. Eur J Appl Physiol 106:71–77. doi:10.1007/s00421-009-0991-z

    Article  PubMed  CAS  Google Scholar 

  • Hinkley DV (1969) Inference about the intersection in two-phase regression. Biometrika 56:495–504. doi:10.1093/biomet/56.3.495

    Article  Google Scholar 

  • Kanamaru Y, Kikukawa A, Shimamura K (2006) Salivary chromogranin-A as a marker of psychological stress during a cognitive test battery in humans. Stress 9:127–131. doi:10.1080/14769670600909594

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Asada N, Yanase H et al (1999) Salivary secretion of highly concentrated chromogranin A in response to noradrenaline and acetylcholine in isolated and perfused rat submandibular glands. Exp Physiol 84:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Asada N, Yanase H et al (2000) Salivary secretion of chromogranin A. Control by autonomic nervous system. Adv Exp Med Biol 482:143–151. doi:10.1007/0-306-46837-9_11

    Article  PubMed  CAS  Google Scholar 

  • Kivlighan KT, Granger DA (2006) Salivary alpha-amylase response to competition: relation to gender, previous experience, and attitudes. Psychoneuroendocrinology 31:703–714. doi:10.1016/j.psyneuen.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  • Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34:486–496. doi:10.1016/j.psyneuen.2009.01.014

    Article  PubMed  CAS  Google Scholar 

  • Pérez M, Lucía A, Carvajal A et al (1999) Determination of the maximum steady state of lactate (MLSS) in saliva: an alternative to blood lactate determination. Jpn J Physiol 49:395–400

    Article  PubMed  Google Scholar 

  • Proctor GB, Carpenter GH (2007) Regulation of salivary gland function by autonomic nerves. Auton Neurosci 133:3–18. doi:10.1016/j.autneu.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  • Santos RVT, Almeida ALR, Caperuto EC et al (2006) Effects of a 30-km race upon salivary lactate correlation with blood lactate. Comp Biochem Physiol B Biochem Mol Biol 145:114–117. doi:10.1016/j.cbpb.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Saruta J, Tsukinoki K, Sasaguri K et al (2005) Expression and localization of chromogranin A gene and protein in human submandibular gland. Cells Tissues Organs (Print) 180:237–244. doi:10.1159/000088939

    Article  CAS  Google Scholar 

  • Scannapieco FA, Torres G, Levine MJ (1993) Salivary alpha-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 4(3–4):301–307. doi:10.1177/10454411930040030701

    PubMed  CAS  Google Scholar 

  • Segura R, Javierre C, Ventura JL et al (1996) A new approach to the assessment of anaerobic metabolism: measurement of lactate in saliva. Br J Sports Med 30:305–309

    Article  PubMed  CAS  Google Scholar 

  • Svedahl K, MacIntosh BR (2003) Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 28:299–323

    Article  PubMed  CAS  Google Scholar 

  • Takiyyuddin MA, Cervenka JH, Sullivan PA et al (1990) Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Circulation 81:185–195

    Article  PubMed  CAS  Google Scholar 

  • Takiyyuddin MA, Baron AD, Cervenka JH et al (1991) Suppression of chromogranin-A release from neuroendocrine sources in man: pharmacological studies. J Clin Endocrinol Metab 72:616–622

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Cik M, Marth E et al (2010) Feasibility of testing three salivary stress biomarkers in relation to naturalistic traffic noise exposure. Int J Hyg Environ Health 213:153–155. doi:10.1016/j.ijheh.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  • Weltman A, Pritzlaff CJ, Wideman L et al (2000) Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow. J Appl Physiol 89:629–635

    PubMed  CAS  Google Scholar 

  • Yamakoshi T, Park S-B, Jang W-C et al (2009) Relationship between salivary chromogranin-A and stress induced by simulated monotonous driving. Med Biol Eng Comput 47:449–456. doi:10.1007/s11517-009-0447-y

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to participants and Mr. Gino Degani and Wander Pires for their involvement and understanding towards the instructions given throughout the study. Thanks are also due to the Department of Cardiology of the Federal University of Uberlandia for conducting the tests for aerobic capacity and to the Laboratory of Physical Evaluation and Training (LAFIT-UCB) of the Catholic University of Brasília for providing some of the reagents and equipment for lactate analysis. This study was supported by grants from the funding agency FAPEMIG. The funding agency had no role in designing the study, collecting or analysing data, writing the report or in submitting the manuscript for publication. O.B. and M.D. received graduate fellowships from the international program PEC-PG/CNPq and CNPq, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foued S. Espindola.

Additional information

Communicated by David C. Poole.

The authors O. L. Bocanegra and M. M. Diaz contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocanegra, O.L., Diaz, M.M., Teixeira, R.R. et al. Determination of the lactate threshold by means of salivary biomarkers: chromogranin A as novel marker of exercise intensity. Eur J Appl Physiol 112, 3195–3203 (2012). https://doi.org/10.1007/s00421-011-2294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2294-4

Keywords

Navigation