Skip to main content

Advertisement

Log in

Inert gas narcosis has no influence on thermo-tactile sensation

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N2O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N2O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m−2. Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N2O (N2O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N2O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N2O had no influence on thermo-tactile sensation in normothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt-Nielsen L, Bjerring P (1988) Sensory and pain threshold characteristics to laser stimuli. J Neurol Neurosurg Psychiatry 51:35–42

    Article  PubMed  CAS  Google Scholar 

  • Bennett PB (1982) Inert gas narcosis. In: Bennett PB, Elliot DH (eds) The physiology of medicine and diving, 3rd edn. Best Publishing, San Pedro, pp 239–261

    Google Scholar 

  • Biersner RJ (1972) Selective performance effects of nitrous oxide. Hum Factors 14:187–194

    PubMed  CAS  Google Scholar 

  • Biersner RJ, Hall DA, Neuman TS, Linaweaver PG (1977) Learning rate equivalency of two narcotic gases. J Appl Psychol 62:747–750

    Article  PubMed  CAS  Google Scholar 

  • Brengelmann GL, Savage MV (1997) Temperature regulation in the neutral zone. Ann NY Acad Sci 813:39–50

    Article  PubMed  CAS  Google Scholar 

  • Buschbacher RM (1998) Body mass index effect on common nerve conduction study measurements. Muscle Nerve 21:1398–1404

    Article  PubMed  CAS  Google Scholar 

  • Cabanac M (1981) Physiological signals for thermal comfort. In: Cena K, Clark JA (eds) Bioengineering thermal physiology and comfort. Elsevier, Amsterdam, pp 181–192

    Chapter  Google Scholar 

  • Cabanac M (1969) Plaisir ou deplaisir de la sensation thermique et homothermique. Physiol Behav 4:359–364

    Article  Google Scholar 

  • Collins KJ, Exton-Smith AN, Dore C (1981) Urban hypothermia: preferred temperature and thermal perception in old age. Br Med J (Clin Res Ed) 282:175–177

    Article  CAS  Google Scholar 

  • Davidson GM (1961) Peripheral blood flow during anaesthesia. Aust NZ J Surg 31:29–39

    Article  CAS  Google Scholar 

  • Doeland HJ, Nauta JJP, van Zandenberg JB, van der Eerden HAM, van Diemen NGJ, Bertelsmann FW, Heimans JJ (1989) The relationship of cold and warmth cutaneous sensation to age and gender. Muscle Nerve 12:712–715

    Article  PubMed  CAS  Google Scholar 

  • Duarte R, McNeill A, Drummond G, Tiplady B (2008) Comparison of the sedative, cognitive, and analgesic effects of nitrous oxide, sevoflurane, and ethanol. Br J Anaesth 100:203–210

    Article  PubMed  Google Scholar 

  • Dyck PJ, Karnes J, O’Brien PC (1987) Detection thresholds ofcutaneous sensation. In: Dyck PJ, Thomas PK, Asbury AK, Winegrad AI, Porte D (eds) Diabetic neuropathy. Saunders, Philadelphia, pp 107–121

    Google Scholar 

  • Eger EI II (1985) Nitrous oxide/N2O. Elsevier, New York

    Google Scholar 

  • Fagan D, Paul DL, Tiplady B, Scott DB (1994) A dose-response study of the effects of inhaled nitrous oxide on psychological performance and mood. Psychopharmacology (Berl) 116:333–338

    Article  CAS  Google Scholar 

  • Fillingim R, Maddux V, Shackelford J (1999) Sex differences in heat pain thresholds as a function of assessment method and rate of rise. Somatosens Mot Res 16:57–62

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Carroll MB, Burns D, Howe N, Robinson K (1987) A portable system for measuring cutaneous thresholds for warming and cooling. J Neurol Neurosurg Psychiatry 50:1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Fowler B, Ackles KN, Porlier G (1985) Effects of inert gas narcosis on behavior—a critical review. Undersea Biomed Res 12:369–402

    PubMed  CAS  Google Scholar 

  • Frank SM, Raja SN, Bulcao CF, Goldstein DS (1999) Relative contribution of core and cutaneous temperatures to thermal comfort and autonomic responses in humans. J Appl Physiol 86:1588–1593

    PubMed  CAS  Google Scholar 

  • Gelber DA, Pfeifer MA, Broadstone VL et al (1995) Components of variance for vibratory and thermal threshold testing in normal and diabetic subjects. J Diabetes Complicat 9:170–176

    Article  PubMed  CAS  Google Scholar 

  • Golja P, Tipton MJ, Mekjavic IB (2003) Cutaneous thermal thresholds—the reproducibility of their measurements and the effect of gender. J Therm Biol 28:341–346

    Article  Google Scholar 

  • Gøransson LG, Mellgren SI, Lindal S, Omdal R (2004) The effect of age and gender on epidermal nerve fiber density. Neurology 62:774–777

    PubMed  Google Scholar 

  • Gordon CJ (1997) The role of behavioral thermoregulation as a thermoeffector during prolonged hypoxia in the rat. J Therm Biol 22:315–324

    Article  Google Scholar 

  • Gray L, Stevens JC, Marks LE (1982) Thermal stimulus thresholds: sources of variability. Physiol Behav 29:355–360

    Article  PubMed  CAS  Google Scholar 

  • Hagander LG, Midani HA, Kuskowski MA, Parry GJ (2000) Quantitative sensory testing: effect of site and skin temperature on thermal thresholds. Clin Neurophysiol 111:17–22

    Article  PubMed  CAS  Google Scholar 

  • Hayward MG, Keatinge WR (1979) Progressive symptomless hypothermia in water: possible cause of diving accidents. Br Med J 1:1182

    Article  PubMed  CAS  Google Scholar 

  • Hensel H (1976) Sensory functions of the skin in primates with special reference to man. In: Zotterman Y (ed) Proceedings of the international symposium. Oxford, Pergamon, pp 331–353

    Google Scholar 

  • Hilz M, Axelrod F, Hermann K, Haertl U, Deutsch M, Neundörfer B (1998) Normative values of vibratory perception in 530 children, juveniles and adults aged 3–79 years. J Neurol Sci 159:219–225

    Article  PubMed  CAS  Google Scholar 

  • Hilz M, Stemper B, Axelrod F, Kolodny E, Neundörfer B (1999) Quantitative thermal perception testing in adults. J Clin Neurophysiol 16:462–471

    Article  PubMed  CAS  Google Scholar 

  • Hoke B, Jackson DL, Alexander JM, Flynn ET (1976) Respiratory heat loss and pulmonary function during cold-gas breathing at high pressures. In: Lambertsen CJ (ed) Underwater physiology V. Fed Am Sot Exp Biol, Bethesda, pp 725–740

    Google Scholar 

  • Jamal GA, Hansen S, Weir AI, Ballantyne JP (1985) An improved automated method for the measurement of thermal thresholds. 1. Normal subjects. J Neurol Neurosurg Psychiatry 48:354–360

    Article  PubMed  CAS  Google Scholar 

  • Jakovljević M, Mekjavić IB (2007) Gender differences in susceptibility to subanesthetic concentrations of nitrous oxide. In: Mekjavić IB, Kounalakis SN, Taylor NAS (eds) Proceedings of the 12th international conference on environmental ergonomics, ICEE 2007, Piran, Slovenia (August 19–24, 2007). Biomed, Ljubljana, pp 66–68

  • Johnson JM, Proppe DW (1996) Cardiovascular adjustments to heat stress. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology. Am. Physiol. Soc., Bethesda, pp 215–243

  • Kenshalo DR (1976) Sensory functions of the skin in primates with special reference to man. In: Zotterman Y (ed) Proceedings of the international symposium. Oxford, Pergamon, pp 305–330

    Google Scholar 

  • Kenshalo DR (1986) Somesthetic sensitivity in young and elderly humans. J Gerontol 41:732–742

    PubMed  Google Scholar 

  • Kerslake DMcK (1964) An estimate of the preferred skin temperature distribution in man. Roy Air Force Inst Avid Med Flying Personnel Comm Memo 213

  • Larkin WD, Reilly JP, Kittler LB (1986) Individual differences in sensitivity to transient electrocutaneous stimulation. IEEE Trans Biomed Eng 33:495–504

    Article  PubMed  CAS  Google Scholar 

  • Lautenbacher S, Strian F (1991) Sex differences in pain and thermal sensitivity: the role of body size. Percept Psychophys 50:179–183

    Article  PubMed  CAS  Google Scholar 

  • Lautenbacher S, Strian F (1993) The role of body size in somatosensory testing. Electromyogr Clin Neurophysiol 33:113–118

    PubMed  CAS  Google Scholar 

  • Liou JT, Lui PW, Lo YL, Liou L, Wang SS, Yuan HB, Chan KH, Lee TY (1999) Normative data of quantitative thermal and vibratory thresholds in normal subjects in Taiwan: gender and age effect. Zhonghua Yi Xue Za Zhi (Taipei) 62:431–437

    CAS  Google Scholar 

  • Meh D, Denislic M (1994) Quantitative assessment of thermal and pain sensitivity. J Neurol Sci 127:164–169

    Article  PubMed  CAS  Google Scholar 

  • Mekjavic IB, Morrison JB (1986) Evaluation of predictive formulae for determining metabolic rate during cold water immersion. Aviat Space Environ Med 57:671–680

    PubMed  CAS  Google Scholar 

  • Mekjavic IB, Passias T, Sundberg CJ, Eiken O (1994) Perception of thermal comfort during narcosis. Undersea Hyperb Med 21:9–19

    PubMed  CAS  Google Scholar 

  • Mekjavic IB, Savic SA, Eiken O (1995) Nitrogen narcosis attenuates shivering thermogenesis. J Appl Physiol 78:2241–2244

    PubMed  CAS  Google Scholar 

  • Mekjavic IB, Sundberg CJ (1992) Human temperature regulation during narcosis induced by inhalation of 30% nitrous oxide. J Appl Physiol 73:2246–2254

    PubMed  CAS  Google Scholar 

  • Mercer J (2001) Glossary of terms for thermal physiology. The Commission for Thermal Physiology of the International Union of Physiological Sciences. Jpn J Physiol 51:245–280

    Google Scholar 

  • Miyazaki Y, Adachi T, Utsumi J, Shichino T, Segawa H (1999) Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats. Anesth Analg 88:893–897

    PubMed  CAS  Google Scholar 

  • Nadel ER, Bullard RW, Stolwijk JA (1971) Importance of skin temperature in the regulation of sweating. J Appl Physiol 31:80–87

    PubMed  CAS  Google Scholar 

  • Ostlund A, Linnarsson D, Lind F, Sporrong A (1994) Relative narcotic potency and mode of action of sulfur hexafluoride and nitrogen in humans. J Appl Physiol 76:439–444

    PubMed  CAS  Google Scholar 

  • Pasche A (1986) Thermal problems in human diving. In: Brubakk AO, Kanwisher JW, Sundnes G (eds) Diving in animals and man. Tapir, Trondheim, pp 191–203

  • Passias TC, Meneilly GS, Mekjavic IB (1996) Effect of hypoglycemia on thermoregulatory responses. J Appl Physiol 80:1021–1032

    PubMed  CAS  Google Scholar 

  • Passias TC, Melkjavic IB, Eiken O (1992) The effects of 30% nitrous oxide on thermoregulatory responses in humans. Anesthesiology 76:550–559

    Article  PubMed  CAS  Google Scholar 

  • Pauca AL, Hopkins AM (1971) Acute effects of halothane, nitrous oxide and thiopentone on the upper limb blood flow. Brit J Anaesth 43:326–334

    Article  PubMed  CAS  Google Scholar 

  • Piantadosi CA, Thalmann ED, Spaur WH (1981) Metabolic responses to respiratory heat loss-induced cooling. J App Z Physiol 50:829–834

    CAS  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    Google Scholar 

  • Seah SA, Griffn MJ (2008) Normal values for thermo-tactile and vibrotactile thresholds in males and females. Int Arch Occup Environ Health 81:535–543

    Article  PubMed  Google Scholar 

  • Simon E, Pierau FK, Taylor DC (1986) Central and peripheral thermal control of effectors in homeothermic temperature regulation. Physiol Rev 66:235–300

    Article  PubMed  CAS  Google Scholar 

  • Sosenko JM, Kato M, Soto R, Ayyar DR (1989) Determinants of quantitative sensory testing in non-neuropathic individuals. Electromyogr Clin Neurophysiol 29:459–463

    PubMed  CAS  Google Scholar 

  • Stevens JC, Choo KK (1998) Temperature sensitivity of the body surface over the life span. Somatosens Mot Res 15:13–28

    Article  PubMed  CAS  Google Scholar 

  • Webb P (1982) Thermal problems. In: Bennett PB, Elliott DH (eds) The physiology and medicine of diving. Balliere, Tindal, and Cox, London, pp 297–318

    Google Scholar 

  • Wyss CR, Brengelmann GL, Johnson JM, Rowell LB, Niederberger M (1974) Control of skin blood flow, sweating, and heart rate: role of skin vs. core temperature. J Appl Physiol 36:726–733

    Google Scholar 

  • Yarnitsky D, Ochoa JL (1990) Studies of heat pain sensation in man: perception thresholds, rate of stimulus rise and reaction time. Pain 40:85–91

    Article  PubMed  CAS  Google Scholar 

  • Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125:39–45

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroljub Jakovljević.

Additional information

Communicated by Dag Linnarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakovljević, M., Vidmar, G. & Mekjavic, I.B. Inert gas narcosis has no influence on thermo-tactile sensation. Eur J Appl Physiol 112, 1929–1935 (2012). https://doi.org/10.1007/s00421-011-2169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2169-8

Keywords

Navigation