Skip to main content

Advertisement

Log in

Proteomic analysis of mitochondrial proteins in cardiomyocytes from rats subjected to intermittent hypoxia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Intermittent hypoxia (IH) markedly enhances cardiac tolerance against ischemia/reperfusion injury, but its mechanism and molecular basis remain unclear. For exploring the expression of mitochondrial proteins induced by IH, two-dimensional electrophoresis and Thermo Finnigan LTQ mass spectrometer (MS) were applied. After comparing the protein profiles of myocardial mitochondria between IH and normoxic hearts, 14 protein spots were found to be altered more than threefold between the two groups, 11 of which were identified by Finnigan LTQ MS. Among these 11 proteins, 9 were involved in energy metabolism, including 7 that were increased after IH. The latter were identified as aldehyde dehydrogenase, methylmalonate-semialdehyde dehydrogenase, ATP synthase β chain, mitochondrial aconitase, malate dehydrogenase, electron transfer flavoprotein α subunit and sirtuin 5. Two other proteins, ubiquinol-cytochrome C reductase iron-sulfur subunit and aspartate aminotransferase, were decreased after IH. Biochemical tests for energy metabolism in mitochondria supported the proteomic results. IH exposure also increased the expression of a molecular chaperone—heat shock protein 60 and an antioxidant protein, peroxiredoxin 5. These findings will provide clues for understanding the mechanism of IH-induced cardiac protection and may lead to the development of interventional strategies designed to utilize the advantages of IH clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arkhipenko YV, Sazontova TG, Zhukova AG (2005) Adaptation to periodic hypoxia and hyperoxia improves resistance of membrane structures in heart, liver, and brain. Bull Exp Biol Med 140:278–281

    Article  PubMed  CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Bianchi G, Di Giulio C, Rapino C, Rapino M, Antonucci A, Cataldi A (2006) p53 and p66 proteins compete for hypoxia-inducible factor 1 alpha stabilization in young and old rat hearts exposed to intermittent hypoxia. Gerontology 52:17–23

    Article  PubMed  CAS  Google Scholar 

  • Chavez A, Miranda LF, Pichiule P, Chavez JC (2008) Mitochondria and hypoxia-induced gene expression mediated by hypoxia-inducible factors. Ann N Y Acad Sci 1147:312–320

    Article  PubMed  CAS  Google Scholar 

  • Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456

    Article  PubMed  CAS  Google Scholar 

  • Ding HL, Zhu HF, Dong JW, Zhu WZ, Zhou ZN (2004) Intermittent hypoxia protects the rat heart against ischemia/reperfusion injury by activating protein kinase C. Life Sci 75:2587–2603

    Article  PubMed  CAS  Google Scholar 

  • Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN (2003) Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 13:385–391

    Article  PubMed  CAS  Google Scholar 

  • Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P (2009) Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 46:858–866

    Article  PubMed  CAS  Google Scholar 

  • Hattori I, Takagi Y, Nozaki K, Kondo N, Bai J, Nakamura H, Hashimoto N, Yodoi J (2002) Hypoxia–ischemia induces thioredoxin expression and nitrotyrosine formation in new-born rat brain. Redox Rep 7:256–259

    Article  PubMed  CAS  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia–reperfusion injury. Cardiovasc Res 60:617–625

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Komatsuda A, Ohtani H, Wakui H, Imai H, Sawada K, Otaka M, Ogura M, Suzuki A, Hamada F (2002) Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur J Biochem 269:5931–5938

    Article  PubMed  CAS  Google Scholar 

  • Korge P, Ping P, Weiss JN (2008) Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circ Res 103:873–880

    Article  PubMed  CAS  Google Scholar 

  • Li J, Bosch-Marce M, Nanayakkara A, Savransky V, Fried SK, Semenza GL, Polotsky VY (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha. Physiol Genomics 25:450–457

    Article  PubMed  CAS  Google Scholar 

  • Loffler M, Jockel J, Schuster G, Becker C (1997) Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol Cell Biochem 174:125–129

    Article  PubMed  CAS  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669

    Article  PubMed  CAS  Google Scholar 

  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635

    Article  PubMed  CAS  Google Scholar 

  • Monteiro P, Oliveira PJ, Goncalves L, Providencia LA (2003) Mitochondria: role in ischemia, reperfusion and cell death. Rev Port Cardiol 22:233–254

    PubMed  Google Scholar 

  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570

    Article  PubMed  CAS  Google Scholar 

  • Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR (2008) Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol 164:277–281

    Article  PubMed  CAS  Google Scholar 

  • Neckar J, Szarszoi O, Koten L, Papousek F, Ost’adal B, Grover GJ, Kolar F (2002) Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res 55:567–575

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol 90:1986–1994

    Article  PubMed  CAS  Google Scholar 

  • Rumsey WL, Abbott B, Bertelsen D, Mallamaci M, Hagan K, Nelson D, Erecinska M (1999) Adaptation to hypoxia alters energy metabolism in rat heart. Am J Physiol 276:H71–H80

    PubMed  CAS  Google Scholar 

  • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382:790–801

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    PubMed  CAS  Google Scholar 

  • Shan YX, Liu TJ, Su HF, Samsamshariat A, Mestril R, Wang PH (2003) Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol 35:1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Simon MC (2006) Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv Exp Med Biol 588:165–170

    Article  PubMed  Google Scholar 

  • Stroev SA, Tjulkova EI, Gluschenko TS, Rybnikova EA, Samoilov MO, Pelto-Huikko M (2004) The augmentation of brain thioredoxin-1 expression after severe hypobaric hypoxia by the preconditioning in rats. Neurosci Lett 370:224–229

    Article  PubMed  CAS  Google Scholar 

  • Takeo S, Nasa Y (1999) Role of energy metabolism in the preconditioned heart—a possible contribution of mitochondria. Cardiovasc Res 43:32–43

    Article  PubMed  CAS  Google Scholar 

  • Tien Nguyen-nhu N, Knoops B (2003) Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. FEBS Lett 544:148–152

    Article  PubMed  Google Scholar 

  • Volgin DV, Kubin L (2006) Chronic intermittent hypoxia alters hypothalamic transcription of genes involved in metabolic regulation. Auton Neurosci 126–127:93–99

    Article  PubMed  Google Scholar 

  • Wang J, Bai L, Li J, Sun C, Zhao J, Cui C, Han K, Liu Y, Zhuo X, Wang T, Liu P, Fan F, Guan Y, Ma A (2009) Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart. Sci China C Life Sci 52:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Zhu WZ, Zhu Y, Chen L, Zhou ZN, Yang HT (2004) Intermittent high altitude hypoxia protects the heart against lethal Ca2+ overload injury. Life Sci 76:559–572

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Zhu Y, Zhu WZ, Chen L, Zhou ZN, Yuan WJ, Yang HT (2005) Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 288:H2594–H2602

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, Lamming DW, Souza-Pinto NC, Bohr VA, Rosenzweig A, de Cabo R, Sauve AA, Sinclair DA (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR (2005) Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem 280:4321–4328

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhong N, Zhou ZN (2000a) Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle. Life Sci 67:2465–2471

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhong N, Zhu HF, Zhou ZN (2000b) Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium. Sheng Li Xue Bao 52:89–92

    PubMed  CAS  Google Scholar 

  • Zhao T, Zhang CP, Liu ZH, Wu LY, Huang X, Wu HT, Xiong L, Wang X, Wang XM, Zhu LL, Fan M (2008) Hypoxia-driven proliferation of embryonic neural stem/progenitor cells–role of hypoxia-inducible transcription factor-1alpha. FEBS J 275:1824–1834

    Article  PubMed  CAS  Google Scholar 

  • Zhong N, Zhang Y, Zhu HF, Zhou ZN (2000) Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng Li Xue Bao 52:375–380

    PubMed  CAS  Google Scholar 

  • Zhu HF, Dong JW, Zhu WZ, Ding HL, Zhou ZN (2003) ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury. Life Sci 73:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Zhu WZ, Xie Y, Chen L, Yang HT, Zhou ZN (2006) Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury. J Mol Cell Cardiol 40:96–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Research Center for Proteome Analysis, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences for excellent technical assistance. The authors wish to thank Drs. John Tyberg, Michael A. Laflamme and Jun Zhou for critical reading of the manuscript. This study was supported in part by the grants from the National Natural Science Foundation (No. 30393130) and the National Basic Research Program of China “973” (No. 2006CB504100).

Conflict of interest

The authors have no competing interests or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Nian Zhou.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, WZ., Wu, XF., Zhang, Y. et al. Proteomic analysis of mitochondrial proteins in cardiomyocytes from rats subjected to intermittent hypoxia. Eur J Appl Physiol 112, 1037–1046 (2012). https://doi.org/10.1007/s00421-011-2050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2050-9

Keywords

Navigation