Skip to main content
Log in

Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

High and moderate intensity endurance exercise alters gene expression in human white blood cells (WBCs), but the understanding of how this effect occurs is limited. To increase our knowledge of the nature of this process, we investigated the effects of passing the anaerobic threshold (AnT) on the gene expression profile in WBCs of athletes. Nineteen highly trained skiers participated in a treadmill test with an incremental step protocol until exhaustion (ramp test to exhaustion, RTE). The average total time to exhaustion was 14:40 min and time after AnT was 4:50 min. Two weeks later, seven of these skiers participated in a moderate treadmill test (MT) at 80% peak O2 uptake for 30 min, which was slightly below their AnTs. Blood samples were obtained before and immediately after both tests. RTE was associated with substantially greater leukocytosis and acidosis than MT. Gene expression in WBCs was measured using whole genome microarray expression analysis before and immediately after each test. A total of 310 upregulated genes were found after RTE, and 69 genes after MT of which 64 were identical to RTE. Both tests influenced a variety of known gene pathways related to inflammation, stress response, signal transduction and apoptosis. A large group of differentially expressed previously unknown small nucleolar RNA and small Cajal body RNA was found. In conclusion, a 15-min test to exhaustion was associated with substantially greater changes of gene expression than a 30-min test just below the AnT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affymetrix GeneChip® Whole Transcript (WT) Sense Target Labeling Assay Manual P/N 701880 Rev. 4

  • Andrews GK, Harding MA, Calvet JP, Adamson ED (1987) The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene. Mol Cell Biol 7:3452–3458

    PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B (Methodological) 57:289–300

    Google Scholar 

  • Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50

    Article  PubMed  CAS  Google Scholar 

  • Büttner P, Mosig S, Lechtermann A, Funke H, Mooren FC (2007) Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol 102:26–36

    Article  PubMed  Google Scholar 

  • Caldarola S, De Stefano MC, Amaldi F, Loreni F (2009) Synthesis and function of ribosomal proteins-fading models and new perspectives. FEBS J 276:3199–3210

    Article  PubMed  CAS  Google Scholar 

  • Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, Bachellerie JP, Brosius J, Hüttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311–14316

    Article  PubMed  Google Scholar 

  • Cheent K, Khakoo SI (2009) Natural killer cells: integrating diversity with function. Immunology 126:449–457

    Article  PubMed  CAS  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, Heck JD, Hatfield GW, Cooper DM (2004) Effects of exercise on gene expression in human peripheral blood mononuclear cells. J Appl Physiol 97:1461–1469

    Article  PubMed  CAS  Google Scholar 

  • Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K (1984) Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol 56:628–634

    PubMed  CAS  Google Scholar 

  • Coyle EF (1999) Physiological determinants of endurance exercise performance. J Sci Med Sport 2:181–189

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJ, Robertson JD, Maughan RJ (1986) Haematological changes due to triathlon competition. Br J Sports Med 20:159–161

    Article  PubMed  CAS  Google Scholar 

  • Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907

    PubMed  CAS  Google Scholar 

  • Dybkaer K, Iqbal J, Zhou G, Geng H, Xiao L, Schmitz A, d’Amore F, Chan WC (2007) Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 8:230

    Article  PubMed  Google Scholar 

  • Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Northoff H (2001) Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 7:66–89

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Schlotz E, Passek F, Dickhuth HH, Northoff H (2000a) Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol 89:704–710

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Passek F, Niess AM, Pohla H, Weinstock C, Dickhuth HH, Northoff H (2000b) HSP expression in human leukocytes is modulated by endurance exercise. Med Sci Sports Exerc 32:592–600

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Veith R, Dickhuth HH, Northoff H (2001) Changes of HSP72-expression in leukocytes are associated with adaptation to exercise under conditions of high environmental temperature. J Leukoc Biol 69:747–754

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Zieker D, Niess AM, Moeller E, Russwurm S, Northoff H (2003) Microarray technology—the future analyses tool in exercise physiology? Exerc Immunol Rev 9:58–69

    PubMed  CAS  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26:552–572

    Article  PubMed  CAS  Google Scholar 

  • Felsing NE, Brasel JA, Cooper DM (1992) Effect of low and high intensity exercise on circulating growth hormone in men. J Clin Endocrinol Metab 75:157–162

    Article  PubMed  CAS  Google Scholar 

  • Gardiner CM (2008) Killer cell immunoglobulin-like receptors on NK cells: the how, where and why. Int J Immunogenet 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA, Multhoff G (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    Article  PubMed  CAS  Google Scholar 

  • Ge J, Crosby SD, Heinz ME, Bessler M, Mason PJ (2010) SnoRNA microarray analysis reveals changes in H/ACA and C/D RNA levels caused by dyskerin ablation in mouse liver. Biochem J 429:33–41

    Google Scholar 

  • Giannoulis MG, Jackson N, Shojaee-Moradie F, Nair KS, Sonksen PH, Martin FC, Umpleby AM (2008) The effects of growth hormone and/or testosterone on whole body protein kinetics and skeletal muscle gene expression in healthy elderly men: a randomized controlled trial. J Clin Endocrinol Metab 93:3066–3074

    Article  PubMed  CAS  Google Scholar 

  • Gleeson M (2006) Immune system adaptation in elite athletes. Curr Opin Clin Nutr Metab Care 9:659–665

    Article  PubMed  Google Scholar 

  • Gordis EB, Granger DA, Susman EJ, Trickett PK (2006) Asymmetry between salivary cortisol and α-amylase reactivity to stress: relation to aggressive behavior in adolescents. Psychoneuroendocrinology 31:976–987

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Nagai S, Sese J, Suzuki T, Obata A, Sato T, Toyoda N, Dong HY, Kurachi M, Nagahata T, Shizuno K, Morishita S, Matsushima K (2003) Gene expression profile in human leukocytes. Blood 101:3509–3513

    Article  PubMed  CAS  Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. VI. The oxygen debt at the end of exercise. Proc R Soc Lond B Biol Sci 97:127–137

    CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2008) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 70. J Leukoc Biol 79:425–434

    Article  PubMed  CAS  Google Scholar 

  • Khaustova SA, Shkurnikov MU, Tonevitsky AG (2010a) Short highly intense exercise causes changes in salivary concentrations of hydrocortisone and secretory IgA. Bull Exp Biol Med 149:635–639

    Article  PubMed  CAS  Google Scholar 

  • Khaustova S, Shkurnikov M, Tonevitsky E, Artyushenko V, Tonevitsky A (2010b) Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst 135:3183–3192

    Article  PubMed  CAS  Google Scholar 

  • Kohler M, Puschel K, Sakharov D, Tonevitskiy A, Schanzer W, Thevis M (2008) Detection of recombinant growth hormone in human plasma by a 2-D PAGE method. Electrophoresis 29:4495–4502

    Article  PubMed  CAS  Google Scholar 

  • Kohli U, Grayson BL, Aune TM, Ghimire LV, Kurnik D, Stein CM (2009) Change in mRNA expression after atenolol, a beta-adrenergic receptor antagonist and association with pharmacological response. Arch Drug Inf 2:41–50

    Article  PubMed  CAS  Google Scholar 

  • Lefever S, Vandesompele J, Speleman F, Pattyn F (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucl Acids Res 37:D942–D945

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Liu Q, King TH, Fournier MJ (2010) Strong dependence between functional domains in a dual-function snoRNA infers coupling of rRNA processing and modification events. Nucl Acids Res 38:3376–3387

    Article  PubMed  CAS  Google Scholar 

  • Maltseva DV, Sakharov DA, Tonevitsky EA, Northoff H, Tonevitsky AG (2011) Killer cell immunoglobulin-like receptors and exercise. Exerc Immunol Rev 17:150–163

    PubMed  Google Scholar 

  • Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  PubMed  CAS  Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64:897–934

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • Meier I, Fellini L, Jakovcevski M, Schachner M, Morellini F (2010) Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus 20:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Mignini F, Traini E, Tomassoni D, Vitali M, Streccioni V (2008) Leucocyte subset redistribution in a human model of physical stress. Clin Exp Hypertens 30:720–731

    Article  PubMed  Google Scholar 

  • Mooren FC, Bloming D, Lechtermann A, Lerch MM, Volker K (2002) Lymphocyte apoptosis after exhaustive and moderate exercise. J Appl Physiol 93:147–155

    PubMed  CAS  Google Scholar 

  • Multhoff G (2009) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 25:169–175

    Article  PubMed  CAS  Google Scholar 

  • Murray B (2007) Hydration and physical performance. J Am Coll Nutr 26(5 Suppl):542S–548S

    PubMed  Google Scholar 

  • Nath N, Chattopadhyay M, Kodela R, Tian S, Vlismas P, Boring D, Crowell JA, Kashfi K (2010) Modulation of stress genes expression profile by nitric oxide-releasing aspirin in Jurkat T leukemia cells. Biochem Pharmacol 79:1759–1771

    Article  PubMed  CAS  Google Scholar 

  • Niess AM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Free radicals and oxidative stress in exercise-immunological aspects. Exerc Immunol Rev 5:22–56

    PubMed  CAS  Google Scholar 

  • Northoff H, Symons S, Zieker D, Schaible EV, Schäfer K, Thoma S, Löffler M, Abbasi A, Simon P, Niess AM, Fehrenbach E (2008) Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev 14:86–103

    PubMed  Google Scholar 

  • Nybo L (2008) Hyperthermia and fatigue. J Appl Physiol 104:871–878

    Article  PubMed  Google Scholar 

  • Papadimitriou A, Priftis KN (2009) Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation 16:265–271

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Rohde T, Zacho M (1996) Immunity in athletes. J Sports Med Phys Fitness 36:236–245

    PubMed  CAS  Google Scholar 

  • Radom-Aizik S, Zaldivar F Jr, Leu SY, Galassetti P, Cooper DM (2008) Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol 104:236–243

    Article  PubMed  CAS  Google Scholar 

  • Radom-Aizik S, Zaldivar F Jr, Leu SY, Cooper DM (2009) A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females. J Appl Physiol 107:168–175

    Article  PubMed  CAS  Google Scholar 

  • Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Article  PubMed  Google Scholar 

  • Reichow SL, Hamma T, Ferré-D’Amaré AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucl Acids Res 35:1452–1464

    Article  PubMed  CAS  Google Scholar 

  • Reid MB (2007) Free radicals and muscle fatigue: of ROS, canaries, and the IOC. Free Radic Biol Med 44:169–179

    Article  PubMed  Google Scholar 

  • Roelands B, Meeusen R (2010) Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature. Sports Med 40:229–246

    Article  PubMed  Google Scholar 

  • Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol 100:764–770

    Article  PubMed  CAS  Google Scholar 

  • Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  PubMed  CAS  Google Scholar 

  • Sakharov DA, Thevis M, Tonevitsky AG (2008) Analysis of major isoforms of human growth hormone before and after intensive physical exercise. Bull Exp Biol Med 146:466–469

    Article  PubMed  CAS  Google Scholar 

  • Sakharov DA, Stepanov AV, Shkurnikov MY, Tonevitskii AG (2009) Short-term highly intense physiological stress causes an increase in the expression of heat shock protein in human leukocytes. Bull Exp Biol Med 147:361–365

    Article  PubMed  CAS  Google Scholar 

  • Shkurnikov MU, Donnikov AE, Akimov EB, Sakharov DA, Tonevitsky AG (2008) Free testosterone as marker of adaptation to medium-intensive exercise. Bull Exp Biol Med 146:354–357

    Article  PubMed  CAS  Google Scholar 

  • Simon HB (1984) The immunology of exercise: a brief review. JAMA 252:2735–2738

    Article  PubMed  CAS  Google Scholar 

  • Simon P, Fehrenbach E, Niess AM (2006) Regulation of immediate early gene expression by exercise: short cuts for the adaptation of immune function. Exerc Immunol Rev 12:112–131

    PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Steinacker JM, Brkic M, Simsch C, Nething K, Kresz A, Prokopchuk O, Liu Y (2005) Thyroid hormones, cytokines, physical training and metabolic control. Horm Metab Res 37:538–544

    Article  PubMed  CAS  Google Scholar 

  • Sureda A, Ferrer MD, Tauler P, Romaguera D, Drobnic F, Pujol P, Tur JA, Pons A (2009) Effects of exercise intensity on lymphocyte H2O2 production and antioxidant defences in soccer players. Br J Sports Med 43:186–190

    Article  PubMed  CAS  Google Scholar 

  • Swanson GD, Hughson RL (1988) On the modeling and interpretation of oxygen uptake kinetics from ramp work rate tests. J Appl Physiol 65:2453–2458

    PubMed  CAS  Google Scholar 

  • Timmons BW, Cieslak T (2008) Human natural killer cell subsets and acute exercise: a brief review. Exerc Immunol Rev 14:8–23

    PubMed  Google Scholar 

  • Tullai JW, Schaffer ME, Mullenbrock S, Sholder G, Kasif S, Cooper GM (2007) Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 282:23981–23985

    Article  PubMed  CAS  Google Scholar 

  • van Iterson M, Boer JM, Menezes RX (2010) Filtering, FDR and power. BMC Bioinform 11:450

    Article  Google Scholar 

  • van Stegeren AH, Wolf OT, Kindt M (2008) Salivary alpha amylase and cortisol responses to different stress tasks: Impact of sex. Int J Psychophysiol 69:33–40

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithäuser R (2004) Fluids and hydration in prolonged endurance performance. Nutrition 20:651–656

    Article  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp70 in humans. Cell Stress Chaperones 6:386–393

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K (1984) The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 129(Suppl):535–540

    Google Scholar 

  • Wells JG, Blake B, VanFossan DD (1957) Lactic acid accumulation during work. A suggested standardization of work classification. J Appl Physiol 10:51–55

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Davis JA, Torres F, Wasserman K (1981) A test to determine parameters of aerobic function during exercise. J Appl Physiol 50:217–221

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Ward SA, Rossiter HB (2005) Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc 37:1574–1585

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson DC, Skaggs HS, Sarge KD (2007) HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell Stress Chaperones 12:283–290

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180:563–578

    Article  PubMed  CAS  Google Scholar 

  • Zieker D, Fehrenbach E, Dietzsch J, Fliegner J, Waidmann M, Nieselt K, Gebicke-Haerter P, Spanagel R, Simon P, Niess AM, Northoff H (2005) cDNA-microarray analysis reveals novel candidate genes expressed in human peripheral blood following exhaustive exercise. Physiol Genomics 23:287–294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the athletes who volunteered to participate in the study. We also acknowledge Dr. E. Akimov for help with exercise testing; Dr. S. Khaustova, M. Kogadeeva and E. Trushkin for taking part in Affymetrix experiments, Dr. M. Shkurnikov and Dr. E. Tonevitsky for time and commitment given to this study. This work was supported by Russian Ministry of Science Grants No. 14.740.11.0117 and 16.740.11.0449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Sakharov.

Additional information

Communicated by William J. Kraemer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakharov, D.A., Maltseva, D.V., Riabenko, E.A. et al. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur J Appl Physiol 112, 963–972 (2012). https://doi.org/10.1007/s00421-011-2048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2048-3

Keywords

Navigation