Skip to main content
Log in

The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether ingestion of a small bolus of ice slurry (1.25 g kg−1) could attenuate the reduction in maximal voluntary isometric contraction (MVC) torque output during a 2-min sustained task following exercise-induced hyperthermia. On two separate occasions, 10 males (age: 24 ± 3 years, \( \dot{V}{\text{O}}_{{ 2 {\text{peak}}}} \): 49.8 ± 4.7 ml kg−1 min−1) ran to exhaustion at their first ventilatory threshold in a hot environment (34.1 ± 0.1°C, 49.5 ± 3.6% RH). Prior to and after exercise, subjects performed a 2-min sustained MVC of the right elbow flexors in a thermoneutral environment (24.6 ± 0.8°C, 37.2 ± 4.5% RH). The post exercise MVC was performed immediately following the ingestion of either 1.25 g kg−1 of ice slurry (−1°C; ICE) or warm fluid (40°C; CON), in a counterbalanced and randomised order. Run time to exhaustion (42.4 ± 9.5 vs. 41.7 ± 8.7 min; p = 0.530), and rectal (39.08 ± 0.30 vs. 39.08 ± 0.30°C; p = 0.934) and skin temperatures (35.26 ± 0.65 vs. 35.28 ± 0.67°C; p = 0.922) and heart rate (189 ± 5 vs. 189 ± 6 beats min−1; p = 0.830) at the end of the run were similar between trials. Torque output during the post-exercise 2-min sustained MVC was significantly higher (p = 0.001) following ICE (30.75 ± 16.40 Nm) compared with CON (28.69 ± 14.88 Nm). These results suggest that ice slurry ingestion attenuated the effects of exercise-induced hyperthermia on MVC, possibly via internal thermoreceptive and/or temperature-related sensory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnoutis G, Christaki I, Bardis K, Sidossi LS, Kavouras SA (2010) Small amount of water ingestion but not mouth rinse improves exercise performance in dehydrated athletes. Med Sci Sport Exerc 42(5):112. doi:10.1249/01.MSS.0000385992.58114.58

    Google Scholar 

  • Benzinger TH (1969) Heat regulation: homeostasis of central temperature in man. Physiol Rev 49(4):671–759

    PubMed  CAS  Google Scholar 

  • Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    PubMed  CAS  Google Scholar 

  • Burdon C, O’Connor H, Gifford J, Shirreffs S, Chapman P, Johnson N (2010a) Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. J Sports Sci 28(11):1147–1156. doi:10.1080/02640414.2010.489197

    Article  PubMed  Google Scholar 

  • Burdon CA, O’Connor HT, Gifford JA, Shirreffs SM (2010b) Influence of beverage temperature on exercise performance in the heat: a systematic review. Int J Sport Nutr Exerc Metab 20(2):166–174

    PubMed  Google Scholar 

  • Burton AC (1935) Human calorimetry II: the average temperature of the tissues of the body. J Nutr 9(3):261–280

    CAS  Google Scholar 

  • Carter JM, Jeukendrup AE, Jones DA (2004) The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 36(12):2107–2111 (00005768-200412000-00015[pii])

    Article  PubMed  CAS  Google Scholar 

  • Chambers ES, Bridge MW, Jones DA (2009) Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 587(Pt 8):1779–1794. doi:10.1113/jphysiol.2008.164285

    Article  PubMed  CAS  Google Scholar 

  • Cheung SS (2007) Hyperthermia and voluntary exhaustion: integrating models and future challenges. Appl Physiol Nutr Metab 32(4):808–817

    Article  PubMed  Google Scholar 

  • Cottrell DF (1984) Cold-sensitive mechanoreceptors with afferent C-fibres in the sheep duodenum. Pflugers Arch 402(4):454–457

    Article  PubMed  CAS  Google Scholar 

  • Durnin JV, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32(1):77–97

    Article  PubMed  CAS  Google Scholar 

  • El Ouazzani T, Mei N (1982) Electrophysiologic properties and role of the vagal thermoreceptors of lower esophagus and stomach of cat. Gastroenterology 83(5):995–1001 (S0016508582002339[pii])

    PubMed  CAS  Google Scholar 

  • Gant N, Stinear CM, Byblow WD (2010) Carbohydrate in the mouth immediately facilitates motor output. Brain Res 1350C:151–158. doi:10.1016/jbrainres.2010.04004

    Article  Google Scholar 

  • Gleeson M (1998) Temperature regulation during exercise. Int J Sports Med 19(2):S96–S99

    Article  PubMed  Google Scholar 

  • Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 86(3):1032–1039

    PubMed  CAS  Google Scholar 

  • Guest S, Grabenhorst F, Essick G, Chen Y, Young M, McGlone F, de Araujo I, Rolls ET (2007) Human cortical representation of oral temperature. Physiol Behav 92(5):975–984. doi:10.1016/jphysbeh.2007.07004

    Article  PubMed  CAS  Google Scholar 

  • Gupta BN, Nier K, Hensel H (1979) Cold-sensitive afferents from the abdomen. Pflugers Arch 380(2):203–204

    Article  PubMed  CAS  Google Scholar 

  • Hensel H (1981) Thermoreception and temperature regulation. Academic Press, New York (NY)

    Google Scholar 

  • Lee JK, Shirreffs SM, Maughan RJ (2008) Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc 40(9):1637–1644

    Article  PubMed  Google Scholar 

  • Lucia A, Hoyos J, Perez M, Chicharro JL (2000) Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc 32(10):1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Marino FE (2002) Methods, advantages, and limitations of body cooling for exercise performance. Br J Sports Med 36(2):89–94

    Article  PubMed  CAS  Google Scholar 

  • Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R (2003) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90(1–2):50–57. doi:10.1007/s00421-003-0844-0

    Article  PubMed  CAS  Google Scholar 

  • Morrison S, Sleivert GG, Cheung SS (2004) Passive hyperthermia reduces voluntary activation and isometric force production. Eur J Appl Physiol 91(5–6):729–736

    Article  PubMed  Google Scholar 

  • Nielsen B, Hales JR, Strange S, Christensen NJ, Warberg J, Saltin B (1993) Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 460:467–485

    PubMed  CAS  Google Scholar 

  • Nybo L (2008) Hyperthermia and fatigue. J Appl Physiol 104(3):871–878. doi:10.1152/japplphysiol.00910.2007

    Article  PubMed  Google Scholar 

  • Nybo L, Nielsen B (2001) Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol 91(3):1055–1060

    PubMed  CAS  Google Scholar 

  • Olschewski H, Bruck K (1988) Thermoregulatory, cardiovascular, and muscular factors related to exercise after precooling. J Appl Physiol 64(2):803–811

    PubMed  CAS  Google Scholar 

  • Pottier A, Bouckaert J, Gilis W, Roels T, Derave W (2010) Mouth rinse but not ingestion of a carbohydrate solution improves 1-h cycle time trial performance. Scand J Med Sci Sports 20(1):105–111. doi:10.1111/j1600-0838.2008.00868.x

    Article  PubMed  CAS  Google Scholar 

  • Quod MJ, Martin DT, Laursen PB (2006) Cooling athletes before competition in the heat: comparison of techniques and practical considerations. Sports Med 36(8):671–682

    Article  PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    PubMed  CAS  Google Scholar 

  • Rawson RO, Quick KP (1970) Evidence of deep-body thermoreceptor response to intra-abdominal heating of the ewe. J Appl Physiol 28(6):813–820

    PubMed  CAS  Google Scholar 

  • Riedel W, Siaplauras G, Simon E (1973) Intra-abdominal thermosensitivity in the rabbit as compared with spinal thermosensitivity. Pflugers Arch 340(1):59–70

    Article  PubMed  CAS  Google Scholar 

  • Rollo I, Williams C, Gant N, Nute M (2008) The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab 18(6):585–600

    PubMed  CAS  Google Scholar 

  • Rollo I, Cole M, Miller R, Williams C (2010) The influence of mouth-rinsing a carbohydrate solution on 1 hour running performance. Med Sci Sports Exerc 42(4):798–804. doi:10.1249/MSS.0b013e3181bac6e4

    Article  PubMed  CAS  Google Scholar 

  • Saboisky J, Marino FE, Kay D, Cannon J (2003) Exercise heat stress does not reduce central activation to non-exercised human skeletal muscle. Exp Physiol 88(6):783–790 (EPH_2611[pii])

    Article  PubMed  Google Scholar 

  • Seckl JR, Williams TD, Lightman SL (1986) Oral hypertonic saline causes transient fall of vasopressin in humans. Am J Physiol 251(2 Pt 2):R214–R217

    PubMed  CAS  Google Scholar 

  • Siegel R, Mate J, Brearley MB, Watson G, Nosaka K, Laursen PB (2010) Ice slurry ingestion increases core temperature capacity and running time in the heat. Med Sci Sports Exerc 42(4):717–725. doi:10.1249/MSS.0b013e3181bf257a

    Article  PubMed  Google Scholar 

  • Siri WE (1956) The gross composition of the body. Adv Biol Med Phys 4:239–280

    PubMed  CAS  Google Scholar 

  • Thomas MM, Cheung SS, Elder GC, Sleivert GG (2006) Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J Appl Physiol 100(4):1361–1369

    Article  PubMed  Google Scholar 

  • Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a failure of the motor cortex and the muscle. J Physiol 563(Pt 2):621–631

    PubMed  CAS  Google Scholar 

  • Villanova N, Azpiroz F, Malagelada JR (1997) Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J Physiol 502(Pt 1):215–222

    Article  PubMed  CAS  Google Scholar 

  • Vincent JD, Arnauld E, Nicolescu-Catargi A (1972) Osmoreceptors and neurosecretory cells in the supraoptic complex of the unanaesthetized monkey. Brain Res 45(1):278–281 (0006-8993(72)90238-7[pii])

    Article  PubMed  CAS  Google Scholar 

Download references

Ethical standards

The procedures performed within this experiment comply with the current laws of Australia.

Acknowledgments

This study was funded by the School of Exercise, Biomedical and Health Sciences, Edith Cowan University.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Siegel.

Additional information

Communicated by Toshio Moritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, R., Maté, J., Watson, G. et al. The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. Eur J Appl Physiol 111, 2517–2524 (2011). https://doi.org/10.1007/s00421-011-1876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1876-5

Keywords

Navigation