Skip to main content
Log in

Three-month bilateral hopping intervention is ineffective in initiating bone biomarker response in healthy elderly men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

In animal studies, bone adaptation has been initiated successfully without the transient force spike associated with high impact exercises. Consequently, a 12-week bilateral hopping on the balls of the feet intervention was conducted. 25 elderly men (age 72(SD4) years, height 171(6) cm, weight 75(9) kg) were randomly assigned into exercise and control groups. Ten subjects in each group completed the study. Carboxyterminal propeptide of type I collagen (CICP), bone-specific alkaline phosphatase (bALP) and carboxyterminal telopeptide of type I collagen (CTx) were measured from venous blood samples at baseline, at 2 weeks and at the end of the intervention. Maximal ground reaction force (GRF), osteogenic index (OI) and jump height (JH) were determined from bilateral hopping test and balance was assessed with velocity of center of pressure (COPvelocity) while standing on the preferred leg with eyes open. The intervention consisted of 5–7 sets of 10 s timed bilateral hopping exercise at 75–90% intensity three times/week. There was no significant group × time interaction for GRF, OI and JH (P = 0.065). GRF (11% change from baseline vs. 4%), OI (15 vs. 6%) and COPvelocity (−10 vs. −1%) were not influenced by the intervention (P > 0.170), while the control group improved JH (P = 0.031) (2 vs. 18%). For the biomarkers, no effect was observed in MANOVA (P = 0.536) or in univariate analyses (P = 0.082 to P = 0.820) (CICP −2 vs. −3%, CTx 8 vs. −12%, bALP 0 vs. −3.7%). Allowing transient impact force spikes may be necessary to initiate a bone response in elderly men as the intervention was ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahola R, Korpelainen R, Vainionpää A, Jamsa T (2010) Daily impact score in long-term acceleration measurements of exercise. J Biomech 43:1960–1964. doi:10.1016/j.jbiomech.2010.03.021

    Article  PubMed  Google Scholar 

  • Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13:1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Belli A, Kyröläinen H, Komi PV (2002) Moment and power of lower limb joints in running. Int J Sports Med 23:136–141. doi:10.1055/s-2002-20136

    Article  PubMed  CAS  Google Scholar 

  • Carter ND, Kannus P, Khan KM (2001) Exercise in the prevention of falls in older people: a systematic literature review examining the rationale and the evidence. Sports Med 31:427–438

    Article  PubMed  CAS  Google Scholar 

  • Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30:573–593

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  • Eliakim A, Raisz LG, Brasel JA, Cooper DM (1997) Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res 12:1708–1713. doi:10.1359/jbmr.1997.12.10.1708

    Article  PubMed  CAS  Google Scholar 

  • Erickson CR, Vukovich MD (2010) The osteogenic index and changes in bone markers during a jump-training program: a pilot study. Med Sci Sports Exerc 42:1485–1492. doi:10.1249/MSS.0b013e3181d0fa7a

    Article  PubMed  Google Scholar 

  • Evans RK, Antczak AJ, Lester M, Yanovich R, Israeli E, Moran DS (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40:S660–S670. doi:10.1249/MSS.0b013e318189422b

    Article  PubMed  CAS  Google Scholar 

  • Ferretti JL, Capozza RF, Cointry GR et al (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690

    Article  PubMed  CAS  Google Scholar 

  • Ferretti JL, Cointry GR, Capozza RF, Frost HM (2003) Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev 124:269–279

    Article  PubMed  Google Scholar 

  • Fukashiro S, Komi PV (1987) Joint moment and mechanical power flow of the lower limb during vertical jump. Int J Sports Med 8(Suppl 1):15–21

    Article  PubMed  Google Scholar 

  • Heinonen A, Kannus P, Sievänen H et al (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Henriksen DB (2007) Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol 42:814–820. doi:10.1080/00365520601137272

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Niemelä E, Komi PV (2005) Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99:217–223. doi:10.1152/japplphysiol.01352.2004

    Article  PubMed  CAS  Google Scholar 

  • Järvinen TL, Kannus P, Sievänen H, Jolma P, Heinonen A, Järvinen M (1998) Randomized controlled study of effects of sudden impact loading on rat femur. J Bone Miner Res 13:1475–1482. doi:10.1359/jbmr.1998.13.9.1475

    Article  PubMed  Google Scholar 

  • Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y (2006) Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 100:839–843. doi:10.1152/japplphysiol.00666.2005

    Article  PubMed  Google Scholar 

  • Kohrt WM (2001) Aging and the osteogenic response to mechanical loading. Int J Sport Nutr Exerc Metab 11(Suppl):137–142

    Google Scholar 

  • Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine (2004) American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 36:1985–1996

    Google Scholar 

  • Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–1947

    Article  PubMed  CAS  Google Scholar 

  • Lester ME, Urso ML, Evans RK et al (2009) Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone 45:768–776. doi:10.1016/j.bone.2009.06.001

    Article  PubMed  Google Scholar 

  • Markovic G (2007) Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 41:349–355 (discussion 355). doi:10.1136/bjsm.2007.035113

    Google Scholar 

  • Melton LJ 3rd, Riggs BL, Achenbach SJ et al (2006) Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 21:1847–1855. doi:10.1359/jbmr.060908

    Article  PubMed  Google Scholar 

  • Menkes A, Mazel S, Redmond RA et al (1993) Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 74:2478–2484

    PubMed  CAS  Google Scholar 

  • Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39:886–894. doi:10.1016/j.bone.2006.04.005

    Article  PubMed  Google Scholar 

  • Nilsson J, Thorstensson A (1989) Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand 136:217–227

    Article  PubMed  CAS  Google Scholar 

  • Nummela A, Rusko H, Mero A (1994) EMG activities and ground reaction forces during fatigued and nonfatigued sprinting. Med Sci Sports Exerc 26:605–609

    PubMed  CAS  Google Scholar 

  • Ortiz-Luna G, Garcia-Hernandez P, Tamayo-Orozco JA (2009) Treatment options for osteoporosis, decision making criteria. Salud Publica Mex 51(Suppl 1):S114–S125

    Article  PubMed  Google Scholar 

  • Perttunen JO, Kyröläinen H, Komi PV, Heinonen A (2000) Biomechanical loading in the triple jump. J Sports Sci 18:363–370

    Article  PubMed  CAS  Google Scholar 

  • Rantalainen T, Sievanen H, Linnamo V et al (2009a) Bone rigidity to neuromuscular performance ratio in young and elderly men. Bone 45:956–963. doi:10.1016/j.bone.2009.07.014

    Article  PubMed  CAS  Google Scholar 

  • Rantalainen T, Heinonen A, Linnamo V, Komi PV, Takala TES, Kainulainen H (2009b) Short-term bone biochemical response to a single bout of high-impact exercise. J Sports Sci Med 8:553–559

    Google Scholar 

  • Rantalainen T, Linnamo V, Komi PV, Selanne H, Heinonen A (2010) Seventy-year-old habitual volleyball players have larger tibial cross-sectional area and may be differentiated from their age-matched peers by the osteogenic index in dynamic performance. Eur J Appl Physiol 109:651–658. doi:10.1007/s00421-010-1400-3

    Article  PubMed  CAS  Google Scholar 

  • Rittweger J, Felsenberg D (2009) Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 44:214–224. doi:10.1016/j.bone.2008.10.044

    Article  PubMed  CAS  Google Scholar 

  • Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402

    PubMed  CAS  Google Scholar 

  • Shaw JM, Snow CM (1998) Weighted vest exercise improves indices of fall risk in older women. J Gerontol A Biol Sci Med Sci 53:M53–M58

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Ohsawa I, Watanabe T, Miura T, Sato Y (2003) Effects of physical training on bone mineral density and bone metabolism. J Physiol Anthropol Appl Human Sci 22:203–208

    Article  PubMed  Google Scholar 

  • Stacoff A, Kaelin X, Sutessi E (1987) The impact in landing after a volleyball block. In: Hollander AP, Huijing PA, van Ingen Schenau GJ, de Groot G (eds) Biomechanics XI-B. Free University Press, Amsterdam

    Google Scholar 

  • Stevens JA, Olson S (2000) Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep 49:3–12

    PubMed  CAS  Google Scholar 

  • Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407

    Article  PubMed  CAS  Google Scholar 

  • Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50

    Article  PubMed  Google Scholar 

  • Umemura Y, Sogo N, Honda A (2002) Effects of intervals between jumps or bouts on osteogenic response to loading. J Appl Physiol 93:1345–1348. doi:10.1152/japplphysiol.00358.2002

    PubMed  Google Scholar 

  • Vainionpää A, Korpelainen R, Vihriälä E, Rinta-Paavola A, Leppäluoto J, Jämsä T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463. doi:10.1007/s00198-005-0005-x

    Article  PubMed  Google Scholar 

  • Vainionpää A, Korpelainen R, Kaikkonen H, Knip M, Leppäluoto J, Jämsä T (2007) Effect of impact exercise on physical performance and cardiovascular risk factors. Med Sci Sports Exerc 39:756–763. doi:10.1249/mss.0b013e318031c039

    Article  PubMed  Google Scholar 

  • Vainionpää A, Korpelainen R, Vaananen HK, Haapalahti J, Jamsa T, Leppaluoto J (2009) Effect of impact exercise on bone metabolism. Osteoporos Int 20:1725–1733. doi:10.1007/s00198-009-0881-6

    Article  PubMed  Google Scholar 

  • von Stengel S, Kemmler W, Pintag R et al (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188. doi:10.1152/japplphysiol.01260.2004

    Article  PubMed  CAS  Google Scholar 

  • von Stengel S, Kemmler W, Kalender WA, Engelke K, Lauber D (2007) Differential effects of strength versus power training on bone mineral density in postmenopausal women: a 2-year longitudinal study. Br J Sports Med 41:649–655 (discussion 655). doi:10.1136/bjsm.2006.033480

    Google Scholar 

  • Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaelsson K (2009) Simply ask them about their balance–future fracture risk in a nationwide cohort study of twins. Am J Epidemiol 169:143–149. doi:10.1093/aje/kwn379

    Article  PubMed  Google Scholar 

  • Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837

    Article  PubMed  CAS  Google Scholar 

  • Yeow CH, Ng YH, Lee PV, Goh JC (2010) Tibial cartilage damage and deformation at peak displacement compression during simulated landing impact. Am J Sports Med 38:816–823. doi:10.1177/0363546509350465

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the European regional development fund, the Academy of Finland and by the TBGS National Graduate School of Musculoskeletal Disorders and Biomaterials. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or reflecting the views of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Rantalainen.

Additional information

Communicated by Susan A. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantalainen, T., Hoffrén, M., Linnamo, V. et al. Three-month bilateral hopping intervention is ineffective in initiating bone biomarker response in healthy elderly men. Eur J Appl Physiol 111, 2155–2162 (2011). https://doi.org/10.1007/s00421-011-1849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1849-8

Keywords

Navigation