Skip to main content

Advertisement

Log in

Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin–glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

α-syn:

Alpha-syntrophin

β-DG:

Beta-dystroglycan

ACN:

Acetonitrile

AQP4:

Aquaporin-4

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BN:

Blue Native

CALR:

Calreticulin

Cav-3:

Caveolin-3

CBB G-250:

Coomassie brilliant blue G-250

COX4I1:

Cytochrome-c oxidase subunit 4 isoform 1

DGC:

Dystrophin–glycoprotein complex

EDTA:

Ethylenediaminetetraacetic acid

ER:

Endoplasmic reticulum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HM:

Heavy microsomes

HU:

Hindlimb unloading

MALDI-TOF:

Matrix-assisted laser desorption ionization-time of flight

MHC:

Myosin heavy chain

MPC:

Multi-protein complex

MS:

Mass spectrometry

MTP:

Mitochondrial trifunctional protein

NADH:

Nicotinamide adenine dinucleotide

NDUFS1:

NADH-ubiquinone oxidoreductase 75-kDa subunit

OAPs:

Orthogonal arrays of particles

PAGE:

Polyacrylamide gel electrophoresis

PDI:

Protein disulfide isomerase

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

References

  • Acharyya S, Butchbach ME, Sahenk Z, Wang H, Saji M, Carathers M, Ringel MD, Skipworth RJ, Fearon KC, Hollingsworth MA, Muscarella P, Burghes AH, Rafael-Fortney JA, Guttridge DC (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8:421–432

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Herrick RE, McCue SA (1993) Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. J Appl Physiol 75:2466–2470

    CAS  PubMed  Google Scholar 

  • Blake DJ, Tinsley JM, Davies KE (1996) Utrophin: a structural and functional comparison to dystrophin. Brain Pathol 6:37–47

    Article  CAS  PubMed  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Booth FW (1982) Effect of limb immobilization on skeletal muscle. J Appl Physiol 52:1113–1118

    CAS  PubMed  Google Scholar 

  • Booth FW, Seider MJ (1979) Early change in skeletal muscle protein synthesis after limb immobilization of rats. J Appl Physiol 47:974–977

    CAS  PubMed  Google Scholar 

  • Bragg AD, Amiry-Moghaddam M, Ottersen OP, Adams ME, Froehner SC (2006) Assembly of a perivascular astrocyte protein scaffold at the mammalian blood-brain barrier is dependent on alpha-syntrophin. Glia 53:879–890

    Article  PubMed  Google Scholar 

  • Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367:476–480

    Article  CAS  PubMed  Google Scholar 

  • Chopard A, Pons F, Marini JF (2001) Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280:R323–R330

    CAS  PubMed  Google Scholar 

  • Esteitie N, Hinttala R, Wibom R, Nilsson H, Hance N, Naess K, Tear-Fahnehjelm K, von Dobeln U, Majamaa K, Larsson NG (2005) Secondary metabolic effects in complex I deficiency. Ann Neurol 58:544–552

    Article  CAS  PubMed  Google Scholar 

  • Farquhar R, Honey N, Murant SJ, Bossier P, Schultz L, Montgomery D, Ellis RW, Freedman RB, Tuite MF (1991) Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae. Gene 108:81–89

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89:823–839

    CAS  PubMed  Google Scholar 

  • Frigeri A, Nicchia GP, Verbavatz JM, Valenti G, Svelto M (1998) Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J Clin Invest 102:695–703

    Article  CAS  PubMed  Google Scholar 

  • Frigeri A, Nicchia GP, Desaphy JF, Pierno S, De Luca A, Camerino DC, Svelto M (2001) Muscle loading modulates aquaporin-4 expression in skeletal muscle. FASEB J 15:1282–1284

    Article  CAS  PubMed  Google Scholar 

  • Frigeri A, Nicchia GP, Balena R, Nico B, Svelto M (2004) Aquaporins in skeletal muscle: reassessment of the functional role of aquaporin-4. FASEB J 18:905–907

    CAS  PubMed  Google Scholar 

  • Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez J, Pedemonte M, Weidenheim KM, Pestell RG, Minetti C, Lisanti MP (2000) Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci USA 97:9689–9694

    Article  CAS  PubMed  Google Scholar 

  • Glenney JR Jr, Soppet D (1992) Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci USA 89:10517–10521

    Article  CAS  PubMed  Google Scholar 

  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    Article  CAS  PubMed  Google Scholar 

  • Grichko VP, Heywood-Cooksey A, Kidd KR, Fitts RH (2000) Substrate profile in rat soleus muscle fibers after hindlimb unloading and fatigue. J Appl Physiol 88:473–478

    CAS  PubMed  Google Scholar 

  • Hargens AR, Tipton CM, Gollnick PD, Mubarak SJ, Tucker BJ, Akeson WH (1983) Fluid shifts and muscle function in humans during acute simulated weightlessness. J Appl Physiol 54:1003–1009

    CAS  PubMed  Google Scholar 

  • Hasselgren PO, Fischer JE (1997) The ubiquitin-proteasome pathway: review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions. Ann Surg 225:307–316

    Article  CAS  PubMed  Google Scholar 

  • Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Farrar RP, Bodine SC, Anderson NL (2002) Proteomic analysis of rat soleus muscle undergoing hindlimb suspension-induced atrophy and reweighting hypertrophy. Proteomics 2:543–550

    Article  CAS  PubMed  Google Scholar 

  • Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 4:183–190

    Article  CAS  PubMed  Google Scholar 

  • LaMantia M, Miura T, Tachikawa H, Kaplan HA, Lennarz WJ, Mizunaga T (1991) Glycosylation site binding protein and protein disulfide isomerase are identical and essential for cell viability in yeast. Proc Natl Acad Sci USA 88:4453–4457

    Article  CAS  PubMed  Google Scholar 

  • Manchester JK, Chi MM, Norris B, Ferrier B, Krasnov I, Nemeth PM, McDougal DB Jr, Lowry OH (1990) Effect of microgravity on metabolic enzymes of individual muscle fibers. FASEB J 4:55–63

    CAS  PubMed  Google Scholar 

  • Marsh DR, Campbell CB, Spriet LL (1992) Effect of hindlimb unweighting on anaerobic metabolism in rat skeletal muscle. J Appl Physiol 72:1304–1310

    CAS  PubMed  Google Scholar 

  • Miu B, Martin TP, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, Leger JJ, Bodine-Fowler SC, Edgerton VR (1990) Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887. FASEB J 4:64–72

    CAS  PubMed  Google Scholar 

  • Moriggi M, Cassano P, Vasso M, Capitanio D, Fania C, Musicco C, Pesce V, Gadaleta MN, Gelfi C (2008) A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-l-carnitine supplementation. Proteomics 8:3588–3604

    Article  CAS  PubMed  Google Scholar 

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98:14108–14113

    Article  CAS  PubMed  Google Scholar 

  • Nicchia GP, Cogotzi L, Rossi A, Basco D, Brancaccio A, Svelto M, Frigeri A (2008) Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. J Neurochem 105:2156–2165

    Article  CAS  PubMed  Google Scholar 

  • Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, Edgerton VR (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 73:51S–57S

    CAS  PubMed  Google Scholar 

  • Ohlendieck K, Ervasti JM, Snook JB, Campbell KP (1991) Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol 112:135–148

    Article  CAS  PubMed  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90:3710–3714

    Article  CAS  PubMed  Google Scholar 

  • Pierno S, Desaphy JF, Liantonio A, De Bellis M, Bianco G, De Luca A, Frigeri A, Nicchia GP, Svelto M, Leoty C, George AL Jr, Camerino DC (2002) Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125:1510–1521

    Article  PubMed  Google Scholar 

  • Powers SK, Kavazis AN, Deruisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288:R337–R344

    CAS  PubMed  Google Scholar 

  • Schakman O, Gilson H, Thissen JP (2008) Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 197:1–10

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    CAS  PubMed  Google Scholar 

  • Seo Y, Lee K, Park K, Bae K, Choi I (2006) A proteomic assessment of muscle contractile alterations during unloading and reloading. J Biochem 139:71–80

    Article  CAS  PubMed  Google Scholar 

  • Sjogaard G, Adams RP, Saltin B (1985) Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am J Physiol 248:R190–R196

    CAS  PubMed  Google Scholar 

  • Sotgia F, Lee JK, Das K, Bedford M, Petrucci TC, Macioce P, Sargiacomo M, Bricarelli FD, Minetti C, Sudol M, Lisanti MP (2000) Caveolin-3 directly interacts with the C-terminal tail of beta-dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 275:38048–38058

    Article  CAS  PubMed  Google Scholar 

  • Stein TP, Wade CE (2005) Metabolic consequences of muscle disuse atrophy. J Nutr 135:1824S–1828S

    CAS  PubMed  Google Scholar 

  • Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, Pette D (1999) Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol 277:C1044–C1049

    CAS  PubMed  Google Scholar 

  • Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551:33–48

    Article  CAS  PubMed  Google Scholar 

  • Stump CS, Tipton CM, Henriksen EJ (1997) Muscle adaptations to hindlimb suspension in mature and old Fischer 344 rats. J Appl Physiol 82:1875–1881

    CAS  PubMed  Google Scholar 

  • Thomason DB, Biggs RB, Booth FW (1989) Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257:R300–R305

    CAS  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    CAS  PubMed  Google Scholar 

  • Vajda Z, Pedersen M, Doczi T, Sulyok E, Nielsen S (2004) Studies of mdx mice. Neuroscience 129:993–998

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J (1996) Water transport across mammalian cell membranes. Am J Physiol 270:C12–C30

    CAS  PubMed  Google Scholar 

  • Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1:418–428

    Article  CAS  PubMed  Google Scholar 

  • Wittwer M, Fluck M, Hoppeler H, Muller S, Desplanches D, Billeter R (2002) Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 16:884–886

    CAS  PubMed  Google Scholar 

  • Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Miyagoe Y, Hosaka Y, Tsukita K (2000) Aquaporin-4 is absent at the sarcolemma and at the perivascular astrocyte endfeet in alpha-1 syntrophin knock-out mice. Proc Jpn Acad 76:22–27

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Italian Space Agency (WP1B12-5 OsMA) and FIRB-Rete Nazionale di Proteomica (RBRN07BMCT_009) are gratefully acknowledged. We are grateful to Mauro Mastrototaro and Gaetano De Vito for their excellent technical assistance and Francesco Pisani for many helpful discussions. We would like to thank Anthony Green for proofreading the manuscript and for suggesting language improvements to the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frigeri.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basco, D., Nicchia, G.P., Desaphy, JF. et al. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading. Eur J Appl Physiol 110, 1215–1224 (2010). https://doi.org/10.1007/s00421-010-1592-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1592-6

Keywords

Navigation