Skip to main content
Log in

Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Prolonged dynamic exercise and sustained isometric contractions induce muscle fatigue, as manifested by decreased performance and a reduction in the maximum voluntary contraction force. Studies with non-invasive measurements in exercising humans show that mechanisms located beyond the sarcolemma are important in the fatigue process. In this review, we describe probable cellular mechanisms underlying fatigue-induced changes in excitation–contraction (E–C) coupling occurring in human muscle fibres during strenuous exercise. We use fatigue-induced changes observed in intact single muscle fibres, where force and cellular Ca2+ handling can be directly measured, to explain changes in E–C coupling observed in human muscle during exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509:565–575

    Article  CAS  PubMed  Google Scholar 

  • Andrade FH, Reid MB, Westerblad H (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J 15:309–311

    CAS  PubMed  Google Scholar 

  • Balog EM, Thompson LV, Fitts RH (1994) Role of sarcolemma action potentials and excitability in muscle fatigue. J Appl Physiol 76:2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Bellemare F, Woods JJ, Johansson R, Bigland-Ritchie B (1983) Motor-unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol 50:1380–1392

    CAS  PubMed  Google Scholar 

  • Bergström J, Hultman E, Jorfeldt L, Pernow B, Wahren J (1969) Effect of nicotinic acid on physical working capacity and on metabolism of muscle glycogen in man. J Appl Physiol 26:170–176

    PubMed  Google Scholar 

  • Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Kukulka CG, Lippold OC, Woods JJ (1982) The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. J Physiol 330:265–278

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Smith S, Woods JJ (1983) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol 340:335–346

    CAS  PubMed  Google Scholar 

  • Bilodeau M, Henderson TK, Nolta BE, Pursley PJ, Sandfort GL (2001) Effect of aging on fatigue characteristics of elbow flexor muscles during sustained submaximal contraction. J Appl Physiol 91:2654–2664

    CAS  PubMed  Google Scholar 

  • Booth J, McKenna MJ, Ruell PA, Gwinn TH, Davis GM, Thompson MW, Harmer AR, Hunter SK, Sutton JR (1997) Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. J Appl Physiol 83:511–521

    CAS  PubMed  Google Scholar 

  • Bruton JD, Westerblad H, Katz A, Lännergren J (1996) Augmented force output in skeletal muscle fibres of Xenopus following a preceding bout of activity. J Physiol 493:211–217

    CAS  PubMed  Google Scholar 

  • Bruton JD, Wretman C, Katz A, Westerblad H (1997) Increased tetanic force and reduced myoplasmic [Pi] following a brief series of tetani in mouse soleus muscle. Am J Physiol 272:C870–C874

    CAS  PubMed  Google Scholar 

  • Bruton JD, Lännergren J, Westerblad H (1998) Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. J Appl Physiol 85:478–483

    CAS  PubMed  Google Scholar 

  • Bruton J, Tavi P, Aydin J, Westerblad H, Lännergren J (2003) Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 551:179–190

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184

    Article  CAS  PubMed  Google Scholar 

  • Byrne C, Twist C, Eston R (2004) Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med 34:49–69

    Article  PubMed  Google Scholar 

  • Cady EB, Jones DA, Lynn J, Newham DJ (1989) Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 418:311–325

    CAS  PubMed  Google Scholar 

  • Caremani M, Dantzig J, Goldman YE, Lombardi V, Linari M (2008) Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas. Biophys J 95:5798–5808

    Article  CAS  PubMed  Google Scholar 

  • Carson RG, Riek S, Shahbazpour N (2002) Central and peripheral mediation of human force sensation following eccentric or concentric contractions. J Physiol 539:913–925

    Article  CAS  PubMed  Google Scholar 

  • Chase PB, Kushmerick MJ (1988) Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 53:935–946

    Article  CAS  PubMed  Google Scholar 

  • Clausen T, Nielsen OB (2007) Potassium, Na+, K+-pumps and fatigue in rat muscle. J Physiol 584:295–304

    Article  CAS  PubMed  Google Scholar 

  • Clausen T, Andersen SL, Flatman JA (1993) Na+–K+ pump stimulation elicits recovery of contractility in K+-paralysed rat muscle. J Physiol 472:521–536

    CAS  PubMed  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  CAS  PubMed  Google Scholar 

  • Coupland ME, Puchert E, Ranatunga KW (2001) Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate. J Physiol 536:879–891

    Article  CAS  PubMed  Google Scholar 

  • Davies CT, White MJ (1982) Muscle weakness following dynamic exercise in humans. J Appl Physiol 53:236–241

    CAS  PubMed  Google Scholar 

  • de Ruiter CJ, Jones DA, Sargeant AJ, De Haan A (1999) The measurement of force/velocity relationships of fresh and fatigued human adductor pollicis muscle. Eur J Appl Physiol Occup Physiol 80:386–393

    Article  PubMed  Google Scholar 

  • Duchateau J, Balestra C, Carpentier A, Hainaut K (2002) Reflex regulation during sustained and intermittent submaximal contractions in humans. J Physiol 541:959–967

    Article  CAS  PubMed  Google Scholar 

  • Duchateau J, Semmler JG, Enoka RM (2006) Training adaptations in the behavior of human motor units. J Appl Physiol 101:1766–1775

    Article  PubMed  Google Scholar 

  • Dundon JM, Cirillo J, Semmler JG (2008) Low-frequency fatigue and neuromuscular performance after exercise-induced damage to elbow flexor muscles. J Appl Physiol 105:1146–1155

    Article  PubMed  Google Scholar 

  • Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778

    CAS  PubMed  Google Scholar 

  • Edwards JN, Macdonald WA, van der Poel C, Stephenson DG (2007) O *−2 production at 37°C plays a critical role in depressing tetanic force of isolated rat and mouse skeletal muscle. Am J Physiol Cell Physiol 293:C650–C660

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276:233–255

    CAS  PubMed  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    CAS  PubMed  Google Scholar 

  • Fridén J, Sjöström M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176

    Article  PubMed  Google Scholar 

  • Fryer MW, Owen VJ, Lamb GD, Stephenson DG (1995) Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol 482:123–140

    CAS  PubMed  Google Scholar 

  • Fryer MW, West JM, Stephenson DG (1997) Phosphate transport into the sarcoplasmic reticulum of skinned fibres from rat skeletal muscle. J Muscle Res Cell Motil 18:161–167

    Article  CAS  PubMed  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM (1993) Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 460:549–572

    CAS  PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Gauche E, Lepers R, Rabita G, Leveque JM, Bishop D, Brisswalter J, Hausswirth C (2006) Vitamin and mineral supplementation and neuromuscular recovery after a running race. Med Sci Sports Exerc 38:2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Gondin J, Guette M, Jubeau M, Ballay Y, Martin A (2006) Central and peripheral contributions to fatigue after electrostimulation training. Med Sci Sports Exerc 38:1147–1156

    Article  PubMed  Google Scholar 

  • González E, Delbono O (2001) Age-dependent fatigue in single intact fast- and slow fibers from mouse EDL and soleus skeletal muscles. Mech Ageing Dev 122:1019–1032

    Article  PubMed  Google Scholar 

  • Hanon C, Gajer B (2009) Velocity and stride parameters of world-class 400-meter athletes compared with less experienced runners. J Strength Cond Res 23:524–531

    PubMed  Google Scholar 

  • Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  CAS  PubMed  Google Scholar 

  • Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531:871–878

    Article  CAS  PubMed  Google Scholar 

  • James C, Sacco P, Jones DA (1995) Loss of power during fatigue of human leg muscles. J Physiol 484:237–246

    CAS  PubMed  Google Scholar 

  • Jones DA (1996) High- and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, de Ruiter CJ, de Haan A (2006) Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue. J Physiol 576:913–922

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Turner DL, McIntyre DB, Newham DJ (2009) Energy turnover in relation to slowing of contractile properties during fatiguing contractions of the human anterior tibialis muscle. J Physiol 587:4329–4338

    Article  CAS  PubMed  Google Scholar 

  • Klass M, Guissard N, Duchateau J (2004) Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae. J Appl Physiol 96:1516–1521

    Article  CAS  PubMed  Google Scholar 

  • Kuchinad RA, Ivanova TD, Garland SJ (2004) Modulation of motor unit discharge rate and H-reflex amplitude during submaximal fatigue of the human soleus muscle. Exp Brain Res 158:345–355

    Article  CAS  PubMed  Google Scholar 

  • Lamb GD (2002) Excitation–contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibres. J Muscle Res Cell Motil 23:81–91

    Article  CAS  PubMed  Google Scholar 

  • Lännergren J, Westerblad H (1986) Force and membrane potential during and after fatiguing, continuous high-frequency stimulation of single Xenopus muscle fibres. Acta Physiol Scand 128:359–368

    Article  PubMed  Google Scholar 

  • Lännergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    PubMed  Google Scholar 

  • Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J (2000) Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 32:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Lepers R, Millet GY, Maffiuletti NA (2001) Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 33:1882–1888

    Article  CAS  PubMed  Google Scholar 

  • Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493

    PubMed  Google Scholar 

  • Lévénez M, Kotzamanidis C, Carpentier A, Duchateau J (2005) Spinal reflexes and coactivation of ankle muscles during a submaximal fatiguing contraction. J Appl Physiol 99:1182–1188

    Article  PubMed  Google Scholar 

  • Löscher WN, Cresswell AG, Thorstensson A (1996) Excitatory drive to the alpha-motoneuron pool during a fatiguing submaximal contraction in man. J Physiol 491:271–280

    PubMed  Google Scholar 

  • Lunde PK, Sejersted OM, Thorud HM, Tønnessen T, Henriksen UL, Christensen G, Westerblad H, Bruton J (2006) Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue. Circ Res 98:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Malisoux L, Francaux M, Nielens H, Renard P, Lebacq J, Theisen D (2006) Calcium sensitivity of human single muscle fibers following plyometric training. Med Sci Sports Exerc 38:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929

    Article  CAS  PubMed  Google Scholar 

  • McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X (2006) N-acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576:279–288

    Article  CAS  PubMed  Google Scholar 

  • Medved I, Brown MJ, Bjorksten AR, Leppik JA, Sostaric S, McKenna MJ (2003) N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. J Appl Physiol 94:1572–1582

    CAS  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    CAS  PubMed  Google Scholar 

  • Metzger JM, Moss RL (1987) Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol 393:727–742

    CAS  PubMed  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116

    Article  PubMed  Google Scholar 

  • Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92:486–492

    CAS  PubMed  Google Scholar 

  • Millet GY, Martin V, Lattier G, Ballay Y (2003a) Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 94:193–198

    CAS  PubMed  Google Scholar 

  • Millet GY, Martin V, Maffiuletti NA, Martin A (2003b) Neuromuscular fatigue after a ski skating marathon. Can J Appl Physiol 28:434–445

    PubMed  Google Scholar 

  • Millet GY, Millet GP, Lattier G, Maffiuletti NA, Candau R (2003c) Alteration of neuromuscular function after a prolonged road cycling race. Int J Sports Med 24:190–194

    Article  CAS  PubMed  Google Scholar 

  • Moopanar TR, Allen DG (2005) Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C. J Physiol 564:189–199

    Article  CAS  PubMed  Google Scholar 

  • Nielsen OB, de Paoli F, Overgaard K (2001) Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 536:161–166

    Article  CAS  PubMed  Google Scholar 

  • Overgaard K, Nielsen OB, Flatman JA, Clausen T (1999) Relations between excitability and contractility in rat soleus muscle: role of the Na+–K+ pump and Na+/K+ gradients. J Physiol 518:215–225

    Article  CAS  PubMed  Google Scholar 

  • Pate E, Bhimani M, Franks-Skiba K, Cooke R (1995) Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 486(Pt 3):689–694

    CAS  PubMed  Google Scholar 

  • Pedersen TH, Nielsen OB, Lamb GD, Stephenson DG (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Pedersen TH, de Paoli F, Nielsen OB (2005) Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 125:237–246

    Article  CAS  PubMed  Google Scholar 

  • Place N, Lepers R, Deley G, Millet GY (2004) Time course of neuromuscular alterations during a prolonged running exercise. Med Sci Sports Exerc 36:1347–1356

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Ballay Y, Lepers R (2005) Twitch potentiation is greater after a fatiguing submaximal isometric contraction performed at short vs long quadriceps muscle length. J Appl Physiol 98:429–436

    Article  PubMed  Google Scholar 

  • Place N, Matkowski B, Martin A, Lepers R (2006) Synergists activation pattern of the quadriceps muscle differs when performing sustained isometric contractions with different EMG biofeedback. Exp Brain Res 174:595–603

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007a) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Place N, Martin A, Ballay Y, Lepers R (2007b) Neuromuscular fatigue differs with biofeedback type when performing a submaximal contraction. J Electromyogr Kinesiol 17:253–263

    Article  PubMed  Google Scholar 

  • Place N, Yamada T, Bruton JD, Westerblad H (2008) Interpolated twitches in fatiguing single mouse muscle fibres: implications for the assessment of central fatigue. J Physiol 586:2799–2805

    Article  CAS  PubMed  Google Scholar 

  • Place N, Duclay J, Lepers R, Martin A (2009a) Unchanged H-reflex during a sustained isometric submaximal plantar flexion performed with an EMG biofeedback. J Electromyogr Kinesiol 19:e395–e402

    Article  PubMed  Google Scholar 

  • Place N, Yamada T, Zhang SJ, Westerblad H, Bruton JD (2009b) High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol 587:4717–4724

    Article  CAS  PubMed  Google Scholar 

  • Plaskett CJ, Cafarelli E (2001) Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J Appl Physiol 91:1535–1544

    CAS  PubMed  Google Scholar 

  • Posterino GS, Lamb GD, Stephenson DG (2000) Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat. J Physiol 527(Pt 1):131–137

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, DeRuisseau KC, Quindry J, Hamilton KL (2004) Dietary antioxidants and exercise. J Sports Sci 22:81–94

    Article  PubMed  Google Scholar 

  • Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537:333–345

    Article  CAS  PubMed  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603

    Article  CAS  PubMed  Google Scholar 

  • Ranatunga KW (1987) Effects of acidosis on tension development in mammalian skeletal muscle. Muscle Nerve 10:439–445

    Article  CAS  PubMed  Google Scholar 

  • Rassier DE, Macintosh BR (2000) Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res 33:499–508

    Article  CAS  PubMed  Google Scholar 

  • Reardon TF, Allen DG (2009) Time to fatigue is increased in mouse muscle at 37°C; the role of iron and reactive oxygen species. J Physiol 587:4705–4716

    Article  CAS  PubMed  Google Scholar 

  • Reid MB, Stokic DS, Koch SM, Khawli FA, Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94:2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106:8665–8670

    Article  CAS  PubMed  Google Scholar 

  • Ross EZ, Middleton N, Shave R, George K, Nowicky A (2007) Corticomotor excitability contributes to neuromuscular fatigue following marathon running in man. Exp Physiol 92:417–426

    Article  PubMed  Google Scholar 

  • Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle obtained after dynamic exercise. Pflügers Arch 367:143–149

    Article  CAS  PubMed  Google Scholar 

  • Saldanha A, Nordlund Ekblom MM, Thorstensson A (2008) Central fatigue affects plantar flexor strength after prolonged running. Scand J Med Sci Sports 18:383–388

    Article  CAS  PubMed  Google Scholar 

  • Sale DG (2002) Postactivation potentiation: role in human performance. Exerc Sport Sci Rev 30:138–143

    Article  PubMed  Google Scholar 

  • Sapega AA, Sokolow DP, Graham TJ, Chance B (1987) Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise. Med Sci Sports Exerc 19:410–420

    CAS  PubMed  Google Scholar 

  • Sargeant AJ, Hoinville E, Young A (1981) Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 51:1175–1182

    CAS  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28:345–376

    Article  CAS  PubMed  Google Scholar 

  • Silva JP, Shabalina IG, Dufour E, Petrovic N, Backlund EC, Hultenby K, Wibom R, Nedergaard J, Cannon B, Larsson NG (2005) SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity. EMBO J 24:4061–4070

    Article  CAS  PubMed  Google Scholar 

  • Skof B, Strojnik V (2006) Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold. Br J Sports Med 40:219–222 (discussion 219–222)

    Article  CAS  PubMed  Google Scholar 

  • Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573:511–523

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol 317:281–302

    CAS  PubMed  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    CAS  PubMed  Google Scholar 

  • Theurel J, Lepers R (2008) Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling. Eur J Appl Physiol 103:461–468

    Article  PubMed  Google Scholar 

  • Tupling R, Green H, Grant S, Burnett M, Ranney D (2000) Postcontractile force depression in humans is associated with an impairment in SR Ca(2+) pump function. Am J Physiol Regul Integr Comp Physiol 278:R87–R94

    CAS  PubMed  Google Scholar 

  • van der Poel C, Stephenson DG (2002) Reversible changes in Ca2+-activation properties of rat skeletal muscle exposed to elevated physiological temperatures. J Physiol 544:765–776

    Article  PubMed  CAS  Google Scholar 

  • Wakeling JM, Blake OM, Chan HK (2010) Muscle coordination is key to the power output and mechanical efficiency of limb movements. J Exp Biol 213:487–492

    Article  CAS  PubMed  Google Scholar 

  • Walker SM (1951) Failure of potentiation in successive, posttetanic, and summated twitches in cooled skeletal muscle of the rat. Am J Physiol 166:480–484

    CAS  PubMed  Google Scholar 

  • Warren JA, Jenkins RR, Packer L, Witt EH, Armstrong RB (1992) Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol 72:2168–2175

    CAS  PubMed  Google Scholar 

  • West W, Hicks A, McKelvie R, O’Brien J (1996) The relationship between plasma potassium, muscle membrane excitability and force following quadriceps fatigue. Pflügers Arch 432:43–49

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1991) Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98:615–635

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1993a) The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. J Physiol 466:611–628

    CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1993b) The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. J Physiol 468:729–740

    CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1994) Relaxation, [Ca2+]i and [Mg2+]i during prolonged tetanic stimulation of intact, single fibres from mouse skeletal muscle. J Physiol 480:31–43

    CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1996) The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pflügers Arch 431:964–970

    CAS  PubMed  Google Scholar 

  • Westerblad H, Lännergren J (1991) Slowing of relaxation during fatigue in single mouse muscle fibres. J Physiol 434:323–336

    CAS  PubMed  Google Scholar 

  • Westerblad H, Lee JA, Lamb AG, Bolsover SR, Allen DG (1990) Spatial gradients of intracellular calcium in skeletal muscle during fatigue. Pflügers Arch 415:734–740

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Bruton JD, Lännergren J (1997a) The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500:193–204

    CAS  PubMed  Google Scholar 

  • Westerblad H, Lännergren J, Allen DG (1997b) Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges. J Gen Physiol 109:385–399

    Article  CAS  PubMed  Google Scholar 

  • Widrick JJ, Norenberg KM, Romatowski JG, Blaser CA, Karhanek M, Sherwood J, Trappe SW, Trappe TA, Costill DL, Fitts RH (1998) Force–velocity–power and force–pCa relationships of human soleus fibers after 17 days of bed rest. J Appl Physiol 85:1949–1956

    CAS  PubMed  Google Scholar 

  • Zhang SJ, Bruton JD, Katz A, Westerblad H (2006) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572:551–559

    Article  CAS  PubMed  Google Scholar 

  • Zory R, Boerio D, Jubeau M, Maffiuletti NA (2005) Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26:847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Swedish Research Council and the Swedish National Center for Sports Research for funding.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Place.

Additional information

Communicated by Nigel Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Place, N., Yamada, T., Bruton, J.D. et al. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol 110, 1–15 (2010). https://doi.org/10.1007/s00421-010-1480-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1480-0

Keywords

Navigation