Skip to main content
Log in

Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The present study aimed to examine the effects of tocotrienol-rich fraction (TRF) on exercise endurance and oxidative stress in forced swimming rats. Rats fed on isocaloric diet were orally given 25 (TRF-25) and 50 (TRF-50) mg/kg of TRF, or 25 mg/kg d-α-tocopherol (T-25) whilst the control group received only the vehicle for 28 days, followed by being forced to undergo swimming endurance tests, with measurements taken of various biochemical parameters, including blood glucose, lactate and urea nitrogen, glycogen, total antioxidant capacity, antioxidant enzymes, thiobarbituric acid-reactive substances (TBARS), and protein carbonyl. Results showed that the TRF-treated animals (268.0 ± 24.1 min for TRF-25 and 332.5 ± 24.3 min for TRF-50) swam significantly longer than the control (135.5 ± 32.9 min) and T-25-treated (154.1 ± 36.4 min) animals, whereas there was no difference in the performance between the T-25 and control groups. The TRF-treated rats also showed significantly higher concentrations of liver glycogen, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as of muscle glycogen and SOD than the control and the T-25-treated animals, but lower levels in blood lactate, plasma and liver TBARS, and liver and muscle protein carbonyl. Taken together, these results suggest that TRF is able to improve the physiological condition and reduce the exercise-induced oxidative stress in forced swimming rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe T, Takiguchi Y, Tamura M, Shimura J, Yamazaki K (1995) Effect of vespa amino acid mixture (VAAM) isolated from hornet larval saliva and modified VMM nutrients on endurance exercise in swimming mice improvement in performance and changes of blood lactate and glucose. Jpn J Physiol Fitness Sports Med 44:225–238

    Google Scholar 

  • Aikawa KM, Quintanilha AT, de Lumen BO, Brooks GA, Packer L (1984) Exercise endurance-training alters vitamin E tissue levels and red blood cell hemolysis in rodents. Biosci Rep 4:253–257

    Article  CAS  PubMed  Google Scholar 

  • Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL (2000) Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc 32:1576–1581

    Article  CAS  PubMed  Google Scholar 

  • Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol (Lond) 509:565–575

    Article  CAS  Google Scholar 

  • Ashton T, Rowlands CC, Jones E, Young IS, Jackson SK, Davies B et al (1998) Electron spin resonance spectroscopic detection of oxygen centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol Occup Physiol 77:498–502

    Article  CAS  PubMed  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Bejma J, Ji LL (1999) Aging and acute exercise enhance free radical generation in rat skeletal muscle. J Appl Physiol 87:465–470

    CAS  PubMed  Google Scholar 

  • Bieri JG, Anderson AA (1960) Peroxidation of lipids in tissue homogenates as related to vitamin E. Arch Biochem Biophys 90:105–110

    Article  CAS  Google Scholar 

  • Bonen A (2000) Lactate transporters (MCT proteins) in heart and skeletal muscles. Med Sci Sports Exerc 32:778–789

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2000) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exec 32:790–799

    Article  CAS  Google Scholar 

  • Caroll NV, Longley RW, Roe JH (1956) The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem 220:583–593

    Google Scholar 

  • Chiaradia E, Avellini L, Rueca F, Spaterna A, Porciello F, Antonioni MT et al (1988) Physical exercise, oxidative stress and muscle damage in racehorses. Comp Biochem Physiol B 119:833–836

    Article  Google Scholar 

  • Ciocoiu M, Badescu M, Paduraru I (2007) Protecting antioxidative effects of vitamins E and C in experimental physical stress. J Physiol Biochem 63:187–194

    Article  CAS  PubMed  Google Scholar 

  • Davies KJA, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Ficicilar H, Zergeroglu AM, Tekin D, Eroz G (2003) The effects of acute exercise on plasma antioxidant status and platelet response. Thromb Res 111:267–271

    Article  CAS  PubMed  Google Scholar 

  • Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Rad Biol Med 29:1106–1114

    Article  CAS  PubMed  Google Scholar 

  • Goh SH, Hew NF, Norhanom AW, Yadav M (1994) Inhibition of tumour promotion by various palm oil tocotrienols. Int J Cancer 57:529–531

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Cartier LJ, Chen M, Holloszy JO (1985) Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol A Biol Sci Med Sci 40:281–286

    CAS  Google Scholar 

  • Hong H, Johnson P (1995) Antioxidant enzyme activities and lipid peroxidation levels in exercised and hypertensive rat tissues. Int J Biochem Cell Biol 27:923–931

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RR, Friedland R, Howald H (1984) The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. Int J Sports Med 5:11–14

    Article  CAS  PubMed  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25:225–231

    CAS  PubMed  Google Scholar 

  • Ji LL (1999) Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 222:283–292

    Article  CAS  PubMed  Google Scholar 

  • Kamat JP, Devasagayam TPA (1995) Tocotrienols from palm oil as potent inhibitors or lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195:179–182

    Article  CAS  PubMed  Google Scholar 

  • Kimura YM, Kubo M, Tani T, Arichi S, Okuda H (1981) Studies on Scutellariae radix IV: effects on lipid peroxidation in rat liver. Chem Pharm Bull 29:2610–2617

    Google Scholar 

  • Kumar CT, Reddy VK, Prasad M, Thyagaraju K, Reddanna P (1992) Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidant stress. Mol Cell Biochem 111:109–115

    Article  CAS  PubMed  Google Scholar 

  • Leibovitz BE, Hu ML, Tappel AL (1990) Dietary supplements of vitamin E, beta carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. Lipids 25:125–129

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Galand D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Lew H, Pyke S, Quintanilha A (1985) Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett 185:262–266

    Article  CAS  PubMed  Google Scholar 

  • Maniam S, Mohamed N, Shuid AN, Soelaiman IN (2008) Palm tocotrienol exerted better antioxidant activities in bone than alpha-tocopherol. Basic Clin Pharmacol Toxicol 103:55–60

    Article  CAS  PubMed  Google Scholar 

  • Meydani M, Evans WJ, Handelman G, Biddle L, Fielding RA, Meydani SN et al (1993) Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol 264:R992–R998

    CAS  PubMed  Google Scholar 

  • Minhajuddin M, Beg ZH, Iqbal J (2005) Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food Chem Toxicol 43:747–753

    Article  CAS  PubMed  Google Scholar 

  • Nesaretnam K, Devasagayam TPA, Singh BB, Basiron Y (1993) Influence of palm oil or its tocotrienol-rich fraction on the lipid peroxidation potential of rat liver mitochondria and microsomes. Biochem Mol Biol Inter 30:159–167

    CAS  Google Scholar 

  • Nieman DC, Henson D, McAnulty SR, McAnulty L, Swick NS, Utter AC et al (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultra-marathon. J Appl Physiol 92:1970–1977

    CAS  PubMed  Google Scholar 

  • Novelli GP, Bracciotti G, Falsini S (1990) Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Rad Biol Med 8:9–13

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2004) α-Tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacol 47:904–915

    Article  CAS  Google Scholar 

  • Polidori MC, Mecocci P, Cherubin A, Senin U (2000) Physical activity and oxidative stress during aging. Int J Sports Med 21:154–157

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC et al (1995) Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids 30:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Reznick AZ, Steinhagen-Thiessen E, Gershon D (1982) The effect of exercise on enzyme activities in cardiac muscles of mice of various ages. Biochem Med 28:347–352

    Article  CAS  PubMed  Google Scholar 

  • Robertson JD, Maughan RJ, Duthie GG, Morrice PC (1991) Increased blood antioxidant system of runners in response to training load. Clin Sci (Colch) 80:1333–1336

    Google Scholar 

  • Rossi AL, Blostein-Fujii A, DiSilvesto RA (2000) Soy beverage consumption by young men: increased plasma total antioxidant status and decreased acute, exercise-induced muscle damage. J Nutr Func Med Foods 3:279–291

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Vihko V (1983) Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol Scand 177:105–110

    Google Scholar 

  • Salminen A, Kainulainen H, Vihko V (1984) Endurance training and antioxidants of lung. Experientia 40:822–823

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Atalay M, Agren J, Laaksonnen DE, Hanninen O (1997) Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise. J Appl Physiol 83:189–195

    CAS  PubMed  Google Scholar 

  • Sen CK, Khanna S, Roy S, Packer L (2000) Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 neuronal cells. J Biol Chem 275:13049–13055

    Article  CAS  PubMed  Google Scholar 

  • Serbinova B, Kagan Y, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Rad Biol Med 10:263–275

    Article  CAS  PubMed  Google Scholar 

  • Somani SM, Ravi R, Rybak LP (1995) Effect of exercise training on antioxidant system in brain regions of rat. Pharmacol Biochem Behav 50:635–639

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90:81–89

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Loo G (2004) Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells. Biochem Pharmacol 67:315–324

    Article  CAS  PubMed  Google Scholar 

  • Tiidus PM, Behrens WA, Madere R, Kim JJ, Houston ME (1993) Effects of vitamin E status and exercise training on tissue lipid peroxidation based on two methods of assessment. Nutr Res 13:219–224

    Article  CAS  Google Scholar 

  • Wu SJ, Ng LT (2007) Antioxidant and antihepatoma activities of palm oil extract. J Food Lipids 14:122–137

    Article  CAS  Google Scholar 

  • Wu SJ, Liu PL, Ng LT (2008) Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res 52:921–929

    Article  CAS  PubMed  Google Scholar 

  • Zoppi CC, Hohl R, Silva FC, Lazarim LF, Neto JM, Stancanneli M et al (2006) Vitamin C and E supplementation effects in professional soccer players under regular training. J Int Soc Sports Nutr 3:37–44

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. David Ho (Carotech Ltd., Malaysia) for generously providing the tocotrienol-rich fraction of palm oil for use in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lean-Teik Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SP., Mar, GY. & Ng, LT. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats. Eur J Appl Physiol 107, 587–595 (2009). https://doi.org/10.1007/s00421-009-1159-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1159-6

Keywords

Navigation