Skip to main content
Log in

Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

A reduction in LDL cholesterol and an increase in HDL cholesterol levels are clinically relevant parameters for the treatment of dyslipidaemia, and exercise is often recommended as an intervention. This study aimed to examine the effects of acute, high-intensity exercise (~90% VO2max) and varying carbohydrate levels (control, low and high) on the blood lipid profile. Six male subjects were distributed randomly into exercise groups, based on the carbohydrate diets (control, low and high) to which the subjects were restricted before each exercise session. The lipid profile (triglycerides, VLDL, HDL cholesterol, LDL cholesterol and total cholesterol) was determined at rest, and immediately and 1 h after exercise bouts. There were no changes in the time exhaustion (8.00 ± 1.83; 7.82 ± 2.66; and 9.09 ± 3.51 min) and energy expenditure (496.0 ± 224.8; 411.5 ± 223.1; and 592.1 ± 369.9 kJ) parameters with the three varying carbohydrate intake (control, low and high). Glucose and insulin levels did not show time-dependent changes under the different conditions (P > 0.05). Total cholesterol and LDL cholesterol were reduced after the exhaustion and 1 h recovery periods when compared with rest periods only in the control carbohydrate intake group (P < 0.05), although this relation failed when the diet was manipulated. These results indicate that acute, high-intensity exercise with low energy expenditure induces changes in the cholesterol profile, and that influences of carbohydrate level corresponding to these modifications fail when carbohydrate (low and high) intake is manipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aellen R, Hollmann W, Boutellier U (1993) Effects of aerobic and anaerobic training on plasma lipoproteins. Int J Sports Med 14:396–400. doi:10.1055/s-2007-1021198

    Article  PubMed  CAS  Google Scholar 

  • Astrup A, Meinert Larsen T, Harper A (2004) Atkins and other low-carbohydrate diets: hoax or an effective tool for weight loss? Lancet 364:897–899. doi:10.1016/S0140-6736(04)16986-9

    Article  PubMed  Google Scholar 

  • Barstow TJ, Jones AM, Nguyen PH, Casaburi R (1996) Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol 81:1642–1650

    PubMed  CAS  Google Scholar 

  • Bortolotti M, Tappy L, Schneiter P (2007) Fish oil supplementation does not alter energy efficiency in healthy males. Clin Nutr 26:225–230. doi:10.1016/j.clnu.2006.11.006

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert J, Jones AM, Koppo K (2004) Effect of glycogen depletion on the oxygen uptake slow component in humans. Int J Sports Med 25:351–356. doi:10.1055/s-2004-820938

    Article  PubMed  CAS  Google Scholar 

  • Campaigne BN, Fontaine RN, Park MS, Rymaszewski ZJ (1993) Reversal cholesterol transport with acute exercise. Med Sci Sports Exerc 25:1346–1351. doi:10.1249/00005768-199312000-00005

    PubMed  CAS  Google Scholar 

  • Carter H, Pringle JSM, Boobis L, Jones AM, Doust JH (2004) Muscle glycogen depletion alters oxygen uptake kinetics during heavy exercise. Med Sci Sports Exerc 36(6):965–972. doi:10.1249/01.MSS.0000128202.73676.11

    Article  PubMed  CAS  Google Scholar 

  • Cox AJ, Pyne DB, Cox GR, Callister R, Gleeson M (2008) Pre-exercise carbohydrate status influences carbohydrate-mediated attenuation of post-exercise cytokine responses. Int J Sports Med 29:1003–1009. doi:10.1055/s-2008-1038753

    Article  PubMed  CAS  Google Scholar 

  • De Bock K, Derave W, Eijnde BO, Hesselink MK, Koninckx E, Rose AJ, Schrauwen P, Bonen A, Richter EA, Hespel P (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104:1045–1055. doi:10.1152/japplphysiol.01195.2007

    Article  PubMed  Google Scholar 

  • Di Prampero PE, Ferretti G (1999) The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol 118:103–115. doi:10.1016/S0034-5687(99)00083-3

    Article  PubMed  CAS  Google Scholar 

  • Durstine JL, Grandjean PW, Cox CA, Thompson PD (2002) Lipids, lipoproteins, and exercise. J Cardiopulm Rehabil 22:385–398. doi:10.1097/00008483-200211000-00002

    Article  PubMed  Google Scholar 

  • Ferguson MA, Alderson NL, Trost SG, Essig DA, Burke JR, Durstine JL (1998) effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85:1169–1174

    PubMed  CAS  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of ldl-cholesterol in plasma, without use of the ultracentrifuge. Clin Clem 18:499–502

    CAS  Google Scholar 

  • Fruchart JC, Ailhaud G, Bard JM (1993) Heterogeneity of high density lipoprotein particles. Circulation 87(Suppl 4):III22–III27

    Google Scholar 

  • Glass C, Knowlton RG, Sanjabi PB et al (1997) The effect of exercise-induced glycogen depletion on the lactate, ventilatory and electromyographic thresholds. J Sports Med Phys Fitness 37:32–40

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Armstrong RB, Sembrowich WL et al (1973) Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol 34:615–618

    PubMed  CAS  Google Scholar 

  • Gollnick PD, Piehl K, Saltin B (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241:45–57

    PubMed  CAS  Google Scholar 

  • Grandjean PW, Crouse SF, Rohack JJ (2000) Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 89:472–480

    PubMed  CAS  Google Scholar 

  • Grisdale RK, Jacobs I, Cafarelli E (1990) Relative effects of glycogen depletion and previous exercise on muscle force and endurance capacity. J Appl Physiol 69:1276–1282

    PubMed  CAS  Google Scholar 

  • Heigenhauser GJF, Sutton JR, Jones NL (1983) Effect of glycogen depletion on the ventilatory response to exercise. J Appl Physiol 54:470–474

    PubMed  CAS  Google Scholar 

  • Hubinger L, Mackinnon LT, Lepre F (1995) Lipoprotein(A) [Lp(A)] levels in middle-aged male runners and sedentary controls. Med Sci Sports Exerc 27(4):490–496

    PubMed  CAS  Google Scholar 

  • Kokkinos PF, Fernhall B (1999) Physical activity and high-density lipoprotein cholesterol levels. What is the relationship? Sports Med 28:307–314

    Article  PubMed  CAS  Google Scholar 

  • Krustrup P, Soderlund K, Mohr M, Bangsbo J (2004) Slow-twitch fiber glycogen depletion elevates moderate-exercise fast-twitch fiber activity and 02 uptake. Med Sci Spons Exerc 36(6):973–982

    Article  CAS  Google Scholar 

  • Kuipers H, Verstappen FTJ, Keizer HA, Geurten P, Vankranenburg G (1985) variability of aerobic performance in the laboratory and its physiological correlates. Int J Sports Med 6(4):197–201

    Article  PubMed  CAS  Google Scholar 

  • Leaf DA (2003) The effect of physical exercise on reverse cholesterol transport. Metabolism 52:950–957

    Article  PubMed  CAS  Google Scholar 

  • Lima-Silva AE, De-Oliveira FR, Nakamura FY, Gevaerd MS (2009) Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Braz J Med Biol Res 42:404–412

    Article  PubMed  CAS  Google Scholar 

  • Lira FS, Tavares FL, Yamashita AS, Koyama CH, Alves MJ, Caperuto EC, Batista ML Jr, Seelaender M (2008) Effect of endurance training upon lipid metabolism in the liver of cachectic tumour-bearing rats. Cell Biochem Funct 26:701–708

    Article  PubMed  CAS  Google Scholar 

  • Magkos F, Patterson BW, Mohammed BS, Mittendorfer B (2007) A single 1-H bout of evening exercise increases basal ffa flux without affecting VLDL-triglyceride and VLDL-apolipoprotein B-100 kinetics in untrained lean men. Am J Physiol Endocrinol Metab 292:E1568–E1574

    Article  PubMed  CAS  Google Scholar 

  • Magkos F, Tsekouras YE, Prentzas KI, Basioukas KN, Matsama SG, Yanni AE, Kavouras SA, Sidossis LS (2008) Acute exercise-induced changes in basal VLDL-triglyceride kinetics leading to hypotriglyceridemia manifest more readily after resistance than endurance exercise. J Appl Physiol 31

  • Ozyener F, Rossiter HB, Ward SA, Whipp BJ (2001) Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol 533:891–902

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Ransone JW (2003) Effects of submaximal exercise on high-density lipoprotein-cholesterol subfractions. Int J Sports Med 24:245–251

    Article  PubMed  CAS  Google Scholar 

  • Peoples GE, Mclennan PL, Howe PR, Groeller H (2008) Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol 52(6):540–547

    Article  PubMed  CAS  Google Scholar 

  • Podolin DA, Munger PA, Mazzeo RS (1991) Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol 71(4):1427–1433

    PubMed  CAS  Google Scholar 

  • Ribeiro JP, Hughes V, Fielding RA et al (1986) Metabolic and ventilatory responses to steady-state exercise relative to lactate thresholds. Eur J Appl Physiol Occup Physiol 55:215–221

    Article  PubMed  CAS  Google Scholar 

  • Seip RL, Moulin P, Cocke T, Tall A, Kohrt WM, Mankowitz K, Semenkovich CF, Ostlund R, Schonfeld G (1993) Exercise training decreases plasma cholesteryl ester transfer protein. Arterioscler Thromb 13:1359–1367

    PubMed  CAS  Google Scholar 

  • Simopoulos AP (2008) Omega-3 fatty acids, exercise, physical activity and athletics. World Rev Nutr Diet 98:23–50

    Article  PubMed  Google Scholar 

  • Thomas TR, Smith BK, Donahue OM, Altena TS, James-Kracke M, Sun GY (2004) Effects of omega-3 fatty acid supplementation and exercise on low-density lipoprotein and high-density lipoprotein subfractions. Metabolism 53(6):749–754

    Article  PubMed  CAS  Google Scholar 

  • Thomas TR, Liu Y, Linden MA, Rector RS (2007) Interaction of exercise training and n-3 fatty acid supplementation on postprandial lipemia. Appl Physiol Nutr Metab 32(3):473–480

    Article  PubMed  CAS  Google Scholar 

  • Tsekouras YE, Magkos F, Kellas Y, Basioukas KN, Kavouras SA, Sidossis LS (2008) High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am J Physiol Endocrinol Metab 295(4):E851–E858

    Article  PubMed  CAS  Google Scholar 

  • Volek JS, Sharman MJ, Forsythe CE (2005) Modification of lipoproteins by very low-carbohydrate diets. J Nutr 135(6):1339–1342

    PubMed  CAS  Google Scholar 

  • Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D et al (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216

    Article  PubMed  CAS  Google Scholar 

  • Whipp BJ (1994) The bioenergetic and gas exchange basis of exercise testing. Clin Chest Med 15:173–192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio S. Lira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lira, F.S., Zanchi, N.E., Lima-Silva, A.E. et al. Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men. Eur J Appl Physiol 107, 203–210 (2009). https://doi.org/10.1007/s00421-009-1115-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1115-5

Keywords

Navigation