Skip to main content
Log in

Enhanced metaboreflex sensitivity in hypertensive humans

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The exercise pressor reflex (EPR) is composed of the mechanoreflex and the metaboreflex and has been shown to be overactive in spontaneously hypertensive rats. The aim of the present study was to isolate the metaboreflex using post-exercise ischemia (PEI) and examine the BP response in normotensive (NTN) and hypertensive (HTN) humans. We hypothesize that the post-exercise ischemia-induced maintenance of BP will be greater in HTN when compared to NTN adults. A total of 15 NTN (65 ± 1 years) and 12 HTN (64 ± 1 years) adults were recruited. Beat-to-beat mean arterial pressure (MAP) was measured non-invasively (Finometer). Dynamic handgrip exercise (DHE) was performed for 3 min followed by 2 min of PEI. An unpaired t test was used to examine differences between groups. As compared to resting baseline values, the change in MAP during PEI was greater in HTN than NTN subjects (HTN: Δ = 12 ± 3 mmHg, NTN: Δ = 6 ± 1 mmHg, P < 0.05). These data suggest that HTN humans have enhanced metaboreflex sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AHA (2008) Heart Disease and Stroke Statistics—2008 Update. Dallas, TX, American Heart Association

  • Alam M, Smirk FH (1937) Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 89(4):372–383

    PubMed  CAS  Google Scholar 

  • Amery A, Julius S et al (1967) Influence of hypertension on the hemodynamic response to exercise. Circulation 36(2):231–237

    PubMed  CAS  Google Scholar 

  • Aoki K, Sato K et al (1983) Increased response of blood pressure to rest and handgrip in subjects with essential hypertension. Jpn Circ J 47(7):802–809

    PubMed  CAS  Google Scholar 

  • Benetos A, Safar ME (1991) Response to the cold pressor test in normotensive and hypertensive patients. Am J Hypertens 4(7 Pt 1):627–629

    PubMed  CAS  Google Scholar 

  • Chobanian AV, Bakris GL et al (2003) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42(6):1206–1252. doi:10.1161/01.HYP.0000107251.49515.c2

    Article  PubMed  CAS  Google Scholar 

  • Ciriello J, Caverson MM et al (1986) Function of the ventrolateral medulla in the control of the circulation. Brain Res 396(4):359–391

    PubMed  CAS  Google Scholar 

  • Drummond PD (1983) Cardiovascular reactivity in mild hypertension. J Psychosom Res 27(4):291–297. doi:10.1016/0022-3999(83)90051-X

    Article  PubMed  CAS  Google Scholar 

  • Eliasson K, Hjemdahl P et al (1983) Circulatory and sympatho-adrenal responses to stress in borderline and established hypertension. J Hypertens 1(2):131–139. doi:10.1097/00004872-198308000-00004

    Article  PubMed  CAS  Google Scholar 

  • Flaa A, Mundal HH et al (2006) Sympathetic activity and cardiovascular risk factors in young men in the low, normal, and high blood pressure ranges. Hypertension 47(3):396–402. doi:10.1161/01.HYP.0000203952.27988.79

    Article  PubMed  CAS  Google Scholar 

  • Franklin B (2000). American College of Sports Medicine Guidelines for Exercise Testing and Perscription. Lippincott/Williams and Wilkins, Baltimore

  • Fredrikson M, Dimberg U et al (1985) Arterial blood pressure and general sympathetic activation in essential hypertension during stimulation. Acta Med Scand 217(3):309–317

    PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI et al (1972) Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol 226(1):173–190

    PubMed  CAS  Google Scholar 

  • Hoberg E, Schuler G et al (1990) Silent myocardial ischemia as a potential link between lack of premonitoring symptoms and increased risk of cardiac arrest during physical stress. Am J Cardiol 65(9):583–589. doi:10.1016/0002-9149(90)91034-4

    Article  PubMed  CAS  Google Scholar 

  • Kahn JF (1991) The static exercise-induced arterial hypertension test. Presse Med 20(23):1067–1071

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Longhurst JC et al (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol 55(1 Pt 1):105–112

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Waldrop TG et al (1984) Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovasc Res 18(11):663–668. doi:10.1093/cvr/18.11.663

    Article  PubMed  CAS  Google Scholar 

  • Kazatani Y, Hamada M et al (1995) Beneficial effect of a long-term antihypertensive therapy on blood pressure response to isometric handgrip exercise in patients with essential hypertension. Am J Ther 2(3):165–169. doi:10.1097/00045391-199503000-00003

    Article  PubMed  Google Scholar 

  • Koba S, Hayashi N et al (2004) Pressor response to static and dynamic knee extensions at equivalent workload in humans. Jpn J Physiol 54(5):471–481. doi:10.2170/jjphysiol.54.471

    Article  PubMed  Google Scholar 

  • Krogh A, Lindhard J (1913) The regulation of respiration and circulation during the initial stages of muscular work. J Physiol 47(1–2):112–136

    PubMed  CAS  Google Scholar 

  • Kuz’min AI, Fomenko GV et al (1989) The hemodynamic and neurohumoral reactions induced by submaximal dynamic and isometric loading in hypertension patients. Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR 12(2):42–46

    PubMed  CAS  Google Scholar 

  • Lambert EA, Schlaich MP (2004) Reduced sympathoneural responses to the cold pressor test in individuals with essential hypertension and in those genetically predisposed to hypertension. No support for the “pressor reactor” hypothesis of hypertension development. Am J Hypertens 17(10):863–868

    PubMed  Google Scholar 

  • Leal AK, Williams MA et al (2008) Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats. Am J Physiol Heart Circ Physiol 295(4):H1429–H1438

    Article  PubMed  CAS  Google Scholar 

  • Mancia G, Ludbrook J et al (1976) Carotid baroreceptor reflex in normotensive and hypertensive subjects. Clin Sci Mol Med Suppl 3:343s–345s

    PubMed  CAS  Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 224(1):173–186

    PubMed  CAS  Google Scholar 

  • Parati G, Casadei R et al (1989) Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 13(6 Pt 1):647–655

    PubMed  CAS  Google Scholar 

  • Rondon MU, Laterza MC et al (2006) Abnormal muscle metaboreflex control of sympathetic activity in never-treated hypertensive subjects. Am J Hypertens 19(9):951–957. doi:10.1016/j.amjhyper.2006.02.001

    Article  PubMed  Google Scholar 

  • Sinoway LI, Smith MB et al (1994) Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans. Am J Physiol 267(2 Pt 2):H770–H778

    PubMed  CAS  Google Scholar 

  • Smith SA, Williams MA et al (2006) Exercise pressor reflex function is altered in spontaneously hypertensive rats. J Physiol 577(Pt 3):1009–1020. doi:10.1113/jphysiol.2006.121558

    Article  PubMed  CAS  Google Scholar 

  • Uen S, Un I et al (2006) Myocardial ischemia during everyday life in patients with arterial hypertension: prevalence, risk factors, triggering mechanism and circadian variability. Blood Press Monit 11(4):173–182. doi:10.1097/01.mbp.0000209075.38331.5f

    Article  PubMed  Google Scholar 

  • Victor RG, Seals DR et al (1987) Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. J Clin Invest 79(2):508–516. doi:10.1172/JCI112841

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NIH grant RO3 AG-23836.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Farquhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sausen, M.T., Delaney, E.P., Stillabower, M.E. et al. Enhanced metaboreflex sensitivity in hypertensive humans. Eur J Appl Physiol 105, 351–356 (2009). https://doi.org/10.1007/s00421-008-0910-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0910-8

Keywords

Navigation