Skip to main content
Log in

Countering postural posteffects following prolonged exposure to whole-body vibration: a sensorimotor treatment

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Postural stability of bulldozer operators after a day of work is investigated. When operators are no longer exposed to whole-body vibration (WBV) generated by their vehicle, their sensorimotor coordination and body representation remain altered. A sensorimotor treatment based on a set of customized voluntary movements is tested to counter and prevent potential post-work accidents due to prolonged exposure to WBV. This treatment includes muscle stretching, joint rotations, and plantar pressures, all known to minimize the deleterious effects of prolonged exposure to mechanical vibrations. The postural stability of participants (drivers; N = 12) was assessed via the area of an ellipse computed from the X and Y displacements of the center-of-pressure (CoP) in the horizontal plane when they executed a simple balance task before driving, after driving, and after driving and having performed the sensorimotor treatment. An ancillary experiment is also reported in which a group of non-driver participants (N = 12) performed the same postural task three times during the same day but without exposure to WBV or the sensorimotor treatment. Prolonged exposure to WBV significantly increased postural instability in bulldozer drivers after they operated their vehicle compared to prior to their day of work. The sensorimotor treatment allowed postural stability to return to a level that was not significantly different from that before driving. The results reveal that (1) the postural system remains perturbed after prolonged exposure to WBV due to operating a bulldozer and (2) treatment immediately after driving provides a “sensorimotor recalibration” and a significant decrease in WBV-induced postural instability. If confirmed in different contexts, the postural re-stabilizing effect of the sensorimotor treatment would constitute a simple, rapid, inexpensive, and efficient means to prevent post-work accidents due to balance-related issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Literally the “Professional Organization for Prevention in Public Construction”. http://www.oppbtp.fr

Abbreviations

CoP:

Center of pressure

FFT:

Fast Fourier transform

WBV:

Whole-body vibration

References

  • Abercromby AF, Amonette WE, Layne CS, McFarlin BK, Hinman MR, Paloski WH (2007) Vibration exposure and biodynamic responses during whole-body vibration training. Med Sci Sports Exerc 39:1794–1800. doi:10.1249/mss.0b013e318093f551

    Article  PubMed  Google Scholar 

  • Adamo DE, Martin BJ, Johnson PW (2002) Vibration-induced muscle fatigue, a possible contribution to musculoskeletal injury. Eur J Appl Physiol 88:134–140. doi:10.1007/s00421-002-0660-y

    Article  PubMed  Google Scholar 

  • Baker JT, Patel GH, Corbetta M, Snyder LH (2006) Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. Cereb Cortex 16:447–459. doi:10.1093/cercor/bhi124

    Article  PubMed  Google Scholar 

  • Baraduc P, Wolpert DM (2002) Adaptation to a visuomotor shift depends on the starting posture. J Neurophysiol 88:973–981

    PubMed  Google Scholar 

  • Bardy BG, Oullier O, Bootsma RJ, Stoffregen TA (2002) Dynamics of human postural transitions. J Exp Psychol Hum Percept Perform 28:499–514. doi:10.1037/0096-1523.28.3.499

    Article  PubMed  Google Scholar 

  • Bellmann MA (2002) Perception of whole-body vibrations: from nasic experiments to effects of seat and steering-wheel vibrations on the passenger’s comfort inside vehicles. Universitt Oldendurg

  • Boileau P-E, Scory H (1986) L’exposition des opérateurs de débusqueuses à des vibrations globales du corps. Institut de Recherche en Santé et en Sécurité du Travail du Québec (IRSST), Montréal

  • Boileau P-E, Scory H (1990) Evaluating the exposure of tanker truck drivers to whole-body vibration. Institut de Recherche en Santé et en Sécurité du Travail du Québec (IRSST), Montréal

  • Borel L, Lacour M, Xerri C (1988) Functional synergy of optokinetic and vestibulo-collic reflexes during vertical stimulation in conscious cats. Arch Int Physiol Biochim Biophys 96:A189

    Google Scholar 

  • Bovenzi M (2006) Health risks from occupational exposures to mechanical vibration. Med Lav 97:535–541

    PubMed  CAS  Google Scholar 

  • Carlsöö S (1982) The effect of vibration on the skeleton, joints and muscles. A review of the literature. Appl Ergon 13:251–258. doi:10.1016/0003-6870(82)90064-3

    Article  PubMed  Google Scholar 

  • Casini L, Romaiguere P, Ducorps A, Schwartz D, Anton JL, Roll JP (2006) Cortical correlates of illusory hand movement perception in humans: a MEG study. Brain Res 1121:200–206. doi:10.1016/j.brainres.2006.08.124

    Article  PubMed  CAS  Google Scholar 

  • Craske B, Craske JD (1986) Oscillator mechanisms in the human motor system-investigating their properties using the after-contraction effect. J Mot Behav 18:117–145

    PubMed  CAS  Google Scholar 

  • Dichgans J, Diener HC (1989) The contribution of vestibulo-spinal mechanisms to the maintenance of human upright posture. Acta Otolaryngol 107:338–345. doi:10.3109/00016488909127518

    Article  PubMed  CAS  Google Scholar 

  • Direction générale Humanisation du travail (Belgique) (2005) Série stratégie Sobane: gestion des risques professionnels

  • Duarte M, Zatsiorsky VM (2002) Effects of body lean and visual information on the equilibrium maintenance during stance. Exp Brain Res 146:60–69. doi:10.1007/s00221-002-1154-1

    Article  PubMed  Google Scholar 

  • Duclos C, Roll R, Kavounoudias A, Roll JP (2004) Long-lasting body leanings following neck muscle isometric contractions. Exp Brain Res 158:58–66. doi:10.1007/s00221-004-1871-8

    Article  PubMed  CAS  Google Scholar 

  • Duclos C, Roll R, Kavounoudias A, Roll JP (2007) Cerebral correlates of the “Kohnstamm phenomenon”: an fMRI study. Neuroimage 34:774–783. doi:10.1016/j.neuroimage.2006.06.050

    Article  PubMed  CAS  Google Scholar 

  • Edwards AS (1946) Body sway and vision. Exp Psychol 36:526–535. doi:10.1037/h0059909

    Article  Google Scholar 

  • Eklund G (1972) General features of vibration-induced effects on balance. Ups J Med Sci 77:112–124

    PubMed  CAS  Google Scholar 

  • European Commission (2007) VIBRISK: protocol for epidemiological studies of whole-body vibration (quality of life and management of living resources programme) Key action 4-environment and health-FP5 project

  • Fathallah F (2006) Falls during enter/egress from a vehicle. In: Haslma R, Stubbs D (eds) Understanding and preventing falls. CRC Press, Boca Raton, pp 191–208

    Google Scholar 

  • Fathallah FA, Cotnam JP (2000) Maximum forces sustained during various methods of exiting commercial tractors, trailers and trucks. Appl Ergon 31:25–33. doi:10.1016/S0003-6870(99)00020-4

    Article  PubMed  CAS  Google Scholar 

  • Feldman AG, Latash ML (1982) Inversions of vibration-induced senso-motor events caused by supraspinal influences in man. Neurosci Lett 31:147–151. doi:10.1016/0304-3940(82)90107-0

    Article  PubMed  CAS  Google Scholar 

  • Freitas SMSF, Wieczorek SA, Marchetti PH, Duarte M (2005) Age-related changes in human postural control of prolonged standing. Gait Posture 22:322–330. doi:10.1016/j.gaitpost.2004.11.001

    Article  PubMed  Google Scholar 

  • Fuchs A, Jirsa VK (2008) Coordination: neural, behavioral and social dynamics. Springer, Berlin

    Google Scholar 

  • Gauthier GM, Roll JP, Martin B, Harlay F (1981) Effects of whole-body vibrations on sensory motor system performance in man. Aviat Space Environ Med 52:473–479

    PubMed  CAS  Google Scholar 

  • Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Gilhodes JC, Gurfinkel VS, Roll JP (1992) Role of Ia muscle-spindle afferents in post-contraction and postvibration motor effect genesis. Neurosci Lett 135:247–251. doi:10.1016/0304-3940(92)90447-F

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PB (1972) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175:1382–1384. doi:10.1126/science.175.4028.1382

    Article  PubMed  CAS  Google Scholar 

  • Griffin MJ (1978) The evaluation of vehicle vibration and seats. Appl Ergon 9:15–21. doi:10.1016/0003-6870(78)90214-4

    Article  PubMed  CAS  Google Scholar 

  • Griffin MJ (1990) Handbook of human vibration. Academic Press, London

    Google Scholar 

  • Gurfinkel VS, Levik I, Lebedev MA (1989) Immediate and remote postactivation effects in the human motor system. Neirofiziologiia 21:343–351

    PubMed  CAS  Google Scholar 

  • Haslma R, Stubbs D (2006) Understanding and preventing falls. CRC Press, Boca Raton

    Google Scholar 

  • Heglund RE (1987) SAE technical paper series: falls entering and exiting heavy truck cabs. Proceedings of the truck and bus meeting and exposition. Society of Automotive Engineers, Dearborn

    Google Scholar 

  • Hlavacka F, Mergner T, Krizkova M (1996) Control of the body vertical by vestibular and proprioceptive inputs. Brain Res Bull 40:431–434. doi:10.1016/0361-9230(96)00138-4

    Article  PubMed  CAS  Google Scholar 

  • Hutton RS, Kaiya K, Suzuki S, Watanabe S (1987) Post-contraction errors in human force production are reduced by muscle stretch. J Physiol 393:247–259

    PubMed  CAS  Google Scholar 

  • Ivanenko YP, Wright WG, Gurfinkel VS, Horak F, Cordo P (2006) Interaction of involuntary post-contraction activity with locomotor movements. Exp Brain Res 169:255–260. doi:10.1007/s00221-005-0324-3

    Article  PubMed  CAS  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (1998) The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9:3247–3252. doi:10.1097/00001756-199810050-00021

    Article  PubMed  CAS  Google Scholar 

  • Kavounoudias A, Gilhodes JC, Roll R, Roll JP (1999) From balance regulation to body orientation: two goals for muscle proprioceptive information processing? Exp Brain Res 124:80–88. doi:10.1007/s002210050602

    Article  PubMed  CAS  Google Scholar 

  • Kluzik J, Horak FB, Peterka RJ (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp Brain Res 162:474–489. doi:10.1007/s00221-004-2124-6

    Article  PubMed  Google Scholar 

  • Lackner JR, Levine MS (1979) Changes in apparent body orientation and sensory localization induced by vibration of postural muscles: vibratory myesthetic illusions. Aviat Space Environ Med 50:346–354

    PubMed  CAS  Google Scholar 

  • Latash ML, Lestienne FG (2006) Motor control and learning. Springer, Berlin

    Google Scholar 

  • Leigh RJ, Brandt T (1993) A reevaluation of the vestibuloocular reflex-new ideas of its purpose, properties, neural substrate, and disorders. Neurology 43:1288–1295

    PubMed  CAS  Google Scholar 

  • Martin BJ, Gauthier GM, Roll JP, Hugon M, Harlay F (1980) Effects of whole-body vibrations on standing posture in man. Aviat Space Environ Med 51:778–787

    PubMed  CAS  Google Scholar 

  • Martin BJ, Roll JP, Gauthier GM (1984) Spinal reflex alterations as a function of intensity and frequency of vibration applied to the feet of seated subjects. Aviat Space Environ Med 55:8–12

    PubMed  CAS  Google Scholar 

  • Naito E, Ehrsson HH (2001) Kinesthetic illusion of wrist movement activates motor-related areas. Neuroreport 12:3805–3809. doi:10.1097/00001756-200112040-00041

    Article  PubMed  CAS  Google Scholar 

  • Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JA (2008) Social coordination dynamics: measuring human bonding. Soc Neurosci 3:178–192. doi:10.1080/17470910701563392

    Article  PubMed  Google Scholar 

  • Oullier O, Kavounoudias A, Duclos C, Albert F, Roll JP, Roll R (2007) Re-calibration posturale suite à une exposition prolongée aux vibrations mécaniques d’un engin de chantiers. In: Borel L, Lacour M (eds) Contrôle postural et représentations spatiales: de la neurobiologie à la clinique. Marseille, Solal, pp 255–267

    Google Scholar 

  • Organisme Professionnel de Prévention du Bâtiment et des Travaux Publics (OPPBTP) (2006) Vibrations, le risque différé. Prévention BTP 83:37–45

    Google Scholar 

  • Palmer KT, Griffin MJ, Syddall HE, Pannett B, Cooper C, Coggon D (2003) The relative importance of whole body vibration and occupational lifting as risk factors for low-back pain. Occup Med 60:715–721. doi:10.1136/oem.60.10.715

    Article  CAS  Google Scholar 

  • Park HS, Martin BJ (1993) Contribution of the tonic vibration reflex to muscle stress and muscle fatigue. Scand J Work Environ Health 19:35–42

    PubMed  CAS  Google Scholar 

  • Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 143:276–285. doi:10.1007/s00221-001-0994-4

    Article  PubMed  Google Scholar 

  • Redding GM, Wallace B (2000) Prism exposure aftereffects and direct effects for different movement and feedback times. J Mot Behav 32:83–99

    Article  PubMed  CAS  Google Scholar 

  • Roll JP (1994) Sensibilités cutanées et musculaires. In: Richelle M, Requin J, Robert M (eds) Traité de psychologie expérimentale. Presse Universitaire de France, Paris, pp 483–542

    Google Scholar 

  • Roll JP, Martin B, Gauthier GM, Mussa IF (1980a) Effects of whole-body vibration on spinal reflexes in man. Aviat Space Environ Med 51:1227–1233

    PubMed  CAS  Google Scholar 

  • Roll JP, Gilhodes JC, Tardy-Gervet MF (1980b) Effects of vision on tonic vibration response of a muscle or its antagonists in normal man. Experientia 36:70–72. doi:10.1007/BF02003980

    Article  PubMed  CAS  Google Scholar 

  • Roll R, Gilhodes JC, Roll JP, Popov K, Charade O, Gurfinkel V (1998) Proprioceptive information processing in weightlessness. Exp Brain Res 122:393–402. doi:10.1007/s002210050527

    Article  PubMed  CAS  Google Scholar 

  • Roll R, Kavounoudias A, Roll JP (2002) Cutaneous afferents from human plantar sole contribute to body posture awareness. Neuroreport 13:1957–1961. doi:10.1097/00001756-200210280-00025

    Article  PubMed  Google Scholar 

  • Roll JP, Roll R (1988) From eye to foot: a proprioceptive chain involved in postural control. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait. Elsevier, Amsterdam, pp 155–164

    Google Scholar 

  • Romaiguère P, Anton JL, Roth M, Casini L, Roll JP (2003) Motor and parietal cortical areas both underlie kinaesthesia. Brain Res Cogn Brain Res 16:74–82. doi:10.1016/S0926-6410(02)00221-5

    Article  PubMed  Google Scholar 

  • Sapirstein MR, Herman RC, Wallace GB (1937) A study of aftercontraction. Am J Physiol 119:549–556

    Google Scholar 

  • Seidel H, Heide R (1986) Long-term effects of whole-body vibration: a critical survey of the literature. Int Arch Occup Environ Health 58:1–26. doi:10.1007/BF00378536

    Article  PubMed  CAS  Google Scholar 

  • Suarez H, Arocena M, Suarez A, De Artagaveytia TA, Muse P, Gil J (2003) Changes in postural control parameters after vestibular rehabilitation in patients with central vestibular disorders. Acta Oto-Laryn 123:143–147. doi:10.1080/0036554021000028109

    Article  CAS  Google Scholar 

  • Suvorov GA, Schajpak EJ, Kurerov NN, Seidel H, Bluthner R, Schuster U, Erdmann U (1989) The effect of low-frequency whole-body vibration on the vestibular apparatus. Z Gesamte Hyg 35:496–498

    PubMed  CAS  Google Scholar 

  • Tiemessen IJ, Hulshof CT, Frings-Dresen MH (2007) The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol. BMC Public Health 7:329

  • Wasserman DE, Wilder DG, Pope MH, Magnusson M, Aleksiev AR, Wasserman JF (1997) Whole-body vibration exposure and occupational work-hardening. J Occup Environ Med 39:403–407. doi:10.1097/00043764-199705000-00005

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicka MM, Gilhodes JC, Roll JP (1998) Vibration-induced postural posteffects. J Neurophysiol 79:143–150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Organisme Professionnel de Prévention du Bâtiment et des Travaux Publics (OPPBTP) (the Professional Organization for Prevention in Public Construction). Portions of the results have been presented at the annual conference of the Association Posture Equilibre (December 2006, Marseille, France) and published in French in the proceedings. The authors thank Aurore Bourelly for her help with the non-driver group and Caroline Blanchard for helping with the design of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régine Roll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oullier, O., Kavounoudias, A., Duclos, C. et al. Countering postural posteffects following prolonged exposure to whole-body vibration: a sensorimotor treatment. Eur J Appl Physiol 105, 235–245 (2009). https://doi.org/10.1007/s00421-008-0894-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0894-4

Keywords

Navigation