Skip to main content
Log in

Estimation of the exercise ventilatory compensation point by the analysis of the relationship between minute ventilation and heart rate

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Cardiopulmonary exercise test is the gold standard for the identification of the ventilatory compensation point (VCP), an important threshold for exercise training prescription. We hypothesized that changes in the slope of increment in minute ventilation (V’E) over heart rate (HR) during incremental exercise can be utilized, as alternative to the ventilatory equivalents method, for VCP detection. In 14 healthy subjects (ten males, four females, age 31 ± 10 SD) we studied the ventilatory, cardiovascular and gas exchange adaptations during two incremental cycle ergometer exercise: (F) fast work rate increments (30–20 watt/min, M-F), (S) slow work rate increments (15–10 watt/min, M-F). A good between-method agreement in VCP detection in terms of oxygen uptake (V’O2) was found in both F and S protocols (F: −7 ± 118 V’O2 ml/min; S: −36 ± 144 V’O2 ml/min). VCP occurred at the same percentage of peak V’O2 in both protocols. The changes in the V’E versus HR slope during incremental exercise can be used to detect the VCP as alternative to the ventilatory equivalents method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmaidi S, Varray A, Collomp K, Mercier J, Préfaut C (1992) Relation between the change of slope of heart rate and second lactic and ventilatory thresholds in muscular exercise with large load. C R Seances Soc Biol Fil 186(1–2):145–155

    PubMed  CAS  Google Scholar 

  • ATS/ACCP statement on cardiopulmonary exercise testing (2003). Am J Respir Crit Care Med 167(2):211–277

    Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1973) On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol 34(1):128–132

    PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting the anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1996) Measurement error proportional to the mean. BMJ 313(7049):106

    PubMed  CAS  Google Scholar 

  • Bodner ME, Rhodes EC (2000) A review of the concept of the heart rate deflection point. Sports Med 30(1):31–46

    Article  PubMed  CAS  Google Scholar 

  • Bodner ME, Rhodes EC, Martin AD, Coutts KD (2002) The relationship of the heart rate deflection point to the ventilatory threshold in trained cyclists. J Strength Cond Res Nov 16(4):573–580

    Article  Google Scholar 

  • Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Nov 55(5):1558–1564

    CAS  Google Scholar 

  • Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6(1):39–48

    PubMed  CAS  Google Scholar 

  • Conconi F, Ferrrari MP, Ziglio G, Droghetti P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52:869–873

    PubMed  CAS  Google Scholar 

  • Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patarcchini M, Manfredini F (1996) The Conconi test: methodology after 12 years of application. Int J Sports Med 17:509–519

    Article  PubMed  CAS  Google Scholar 

  • Coplan NL, Gleim GW, Nicholas JA (1986) Using exercise respiratory measurements to compare methods of exercise prescription. Am J Cardiol 58(9):832–836

    Article  PubMed  CAS  Google Scholar 

  • Davis JA, Whipp BJ, Lamarra N, Huntsman DJ, Frank MH, Wasserman K (1982) Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc 14(5):339–343

    PubMed  CAS  Google Scholar 

  • Donald KW, Bishop JM, Cumming C, Wade OL (1955) The effect of exercise on the cardiac output and central dynamics of normal subjects. Clin Sci 14:37–73

    PubMed  CAS  Google Scholar 

  • Droghetti P, Borsetto C, Casoni I, Cellini M, Ferrari M, Paolini AR, Ziglio PG, Conconi F (1985) Noninvasive determination of the anaerobic threshold in canoeing, crosscountry, skiing, cycling, roller and iceskating, rowing, and walking. Eur J Appl Physiol 53:299–303

    Article  CAS  Google Scholar 

  • Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558(Pt1):5–30

    Article  PubMed  CAS  Google Scholar 

  • Grazzi G, Alfieri N, Borsetto C, Casoni I, Manfredini F, Mazzoni G, Conconi F (1999) The power output/heart rate relationship in cycling: test standardization and repeatability. Med Sci Sports Exerc 31:1478–1483

    Article  PubMed  CAS  Google Scholar 

  • Grazzi G, Casoni I, Mazzoni G, Uliari F, Conconi F (2005) Protocol for the Conconi test and determination of the heart rate deflection point. Physiol Res 54:473–475

    PubMed  CAS  Google Scholar 

  • Hansen JE, Sue DY, Oren A, Wasserman K (1987) Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol 59(6):669–674

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Doust JH (1995) Lack of reliability in Conconi’s heart rate deflection point. Int J Sports Med 16(8):541–544

    Article  PubMed  CAS  Google Scholar 

  • Kay GN, Rubien RS, Epstein AE, Plumb VJ (1989) Rate-modulated cardiac pacing based on transthoracic impedance measurements of minute ventilation: correlation with exercise gas exchange. J Am Coll Cardiol 14:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Kuipers H, Keizer HA, de Vries T, van Rijthoven P, Wijts M (1988) Comparison of heart rate as a non-invasive determinant of anaerobic threshold with the lactate threshold when cycling. Eur J Appl Physiol Occup Physiol 58(3):303–306

    Article  PubMed  CAS  Google Scholar 

  • Lau CP, Wong CK, Leung WH, Cheng CH, Lo CW (1989) A comparative evaluation of minute ventilation sensing and activity sensing adaptive-rate pacemakers during daily activities. Pacing Clin Electrophysiol 12:1514–1521

    Article  PubMed  CAS  Google Scholar 

  • Léger L, Tokmakidis SP (1988) Use of the heart rate deflection point to assess the anaerobic threshold. J Appl Physiol 64:1758–1759

    Article  PubMed  Google Scholar 

  • Meyer T, Lucía A, Earnest CP, Kindermann W (2005) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters-theory and application. Int J Sports Med 26(Suppl 1):S38–S48

    Article  PubMed  Google Scholar 

  • Neder JA, Stein R (2006) A simplified strategy for the estimation of the exercise ventilatory thresholds. Med Sci Sports Exerc 38(5):1007–1013

    Article  PubMed  Google Scholar 

  • Ozcelik O, Kelestimur H (2004) Effects of acute hypoxia on the determination of anaerobic threshold using the heart rate-work rate relationships during incremental exercise tests. Physiol Res 53(1):45–51

    PubMed  CAS  Google Scholar 

  • Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6(4):220–224

    Article  PubMed  CAS  Google Scholar 

  • Rickli H, MacCarter DJ, Maire R, Amann FW, Candinas R (1997) Age and sex related changes in heart rate to ventilation coupling: implications for rate adaptive pacemaker algorithms. Pacing Clin Electrophysiol 20(1Pt1):104–111

    Google Scholar 

  • Soucie LP, Carey C, Woodend AK, Tang AS (1997) Correlation of the heart rate-minute ventilation relationship with clinical data: relevance to rate-adaptive pacing. Pacing Clin Electrophysiol 20(8 Pt 1):1913–1918

    Google Scholar 

  • Tokmakidis SP, Léger LA (1992) Comparison of mathematically determined blood lactate and heart rate “threshold” points and relationship with performance. Eur J Appl Physiol Occup Physiol 64(4):309–317

    Article  PubMed  CAS  Google Scholar 

  • Vachon JA, JR Basset DR, Clarke S (1999) Validity of the heart rate deflection point as a predictor of lactate threshold during running. J Appl Physiol 87(1):452–459

    PubMed  CAS  Google Scholar 

  • Wasserman K (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 76(6 Pt 2):VI29–VI39

    Google Scholar 

  • Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    PubMed  CAS  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ (2005) Measurement during integrative cardiopulmonary exercise testing. In: Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ (eds) Principle of exercise testing and interpretation, 4th edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  • Wergel-Kolmert U, Agehäll A, Rosenberg N, Wohlfart B (2001) Day-to-day variation in oxygen consumption at submaximal loads during ergometer cycling by adolescents. Clin Physiol 21(2):135–140

    Article  PubMed  CAS  Google Scholar 

  • Wergel-Kolmert U, Wohlfart B (1999) Day-to-day variation in oxygen consumption and energy expenditure during submaximal treadmill walking in female adolescents. Clin Physiol 19(2):161–168

    Article  PubMed  CAS  Google Scholar 

  • Weston SB, Gray AB, Schneider DA, Gass GC (2002) Effect of ramp slope on ventilation threshold and V’O2 peak in male cyclist. Int J Sports Med 23(1):22–27

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Onorati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onorati, P., Martolini, D., Ora, J. et al. Estimation of the exercise ventilatory compensation point by the analysis of the relationship between minute ventilation and heart rate. Eur J Appl Physiol 104, 87–94 (2008). https://doi.org/10.1007/s00421-008-0777-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0777-8

Keywords

Navigation