Skip to main content

Advertisement

Log in

Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

In this work, the effect of walking speed on the energy expenditure in traumatic lower-limb amputees was studied. The oxygen consumption was measured in 10 transfemoral amputees, 9 transtibial amputees and 13 control subjects, while they stood and walked at different speeds from 0.3 m s−1 to near their maximum sustainable speed. Standing energy expenditure rate was the same in lower-limb amputees and in control subjects (≈1.85 W kg−1). On the contrary, during walking, the net energy expenditure rate was 30–60% greater in transfemoral amputees and 0–15% greater in transtibial amputees than in control subjects. The maximal sustainable speed was about 1.2 m s−1 in transfemoral amputees and 1.6 m s−1 in transtibial amputees, whereas it was above 2 m s−1 in control subjects. Among these three groups, the cost of transport versus speed presented a U-shaped curve; the minimum cost increased with the level of amputation, and the speed at which this minimum occurred decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bastien GJ, Heglund NC, Schepens B (2003) The double contact phase in walking children. J Exp Biol 206:2967–2978

    Article  PubMed  CAS  Google Scholar 

  • Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94(1-2):76–83

    Article  PubMed  CAS  Google Scholar 

  • Cavagna GA, Franzetti P (1986) The determinants of the step frequency in walking in humans. J Physiol Lond 373:235–242

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol Lond 268:467–481

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol Lond 262:639–657

    PubMed  CAS  Google Scholar 

  • De Jaeger D, Willems PA, Heglund NC (2001) The energy cost of walking in children. Pflugers Arch 441:538–543

    Article  Google Scholar 

  • Detrembleur C, Vanmarsenille JM, De Cuyper F, Dierick F (2005) Relationship between energy cost, gait speed, vertical displacement of the centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Gait Posture 21(3):333–340

    Article  PubMed  Google Scholar 

  • Fisher SV, Gullickson G Jr (1978) Energy cost of ambulation in health and disability: a literature review. Arch Phys Med Rehabil 59(3):124–133

    PubMed  CAS  Google Scholar 

  • Frigo C, Tesio L (1986) Speed-dependent variations of lower-limb joint angles during walking. Am J Phys Med 65(2):51–62

    PubMed  CAS  Google Scholar 

  • Fusi S, Campailla E, Causero A, di Prampero PE (2002) The locomotory index: a new proposal for evaluating walking impairments. Int J Sports Med 23:105–111

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez EG, Corcoran PJ, Reyes RL (1974) Energy expenditure in below-knee amputees: correlation with stump length. Arch Phys Med Rehabil 55:111–119

    PubMed  CAS  Google Scholar 

  • Hausswirth C, Brigard AX, Le Chevalier JM (1997) The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med 18(6):449–453

    Article  PubMed  CAS  Google Scholar 

  • Hillary SC, Wallace ES (2000) Trans-tibial amputee gait adaptations as a result of prosthetic inertial manipulation. Disabil Rehabil 22(8):383–386

    Article  Google Scholar 

  • Hof AL, van Bockel RM, Schoppen T, Postema K (2007) Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees. Gait Posture 25(2):250–258

    Article  PubMed  Google Scholar 

  • Inman VT, Ralston HJ, Todd F (1981) Human walking. William & Wilkins, Baltimore, pp 24, 102–103

  • Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocità ed inclinazioni del terreno. Atti Reale Accad Naz Lincei 7:299–368

    CAS  Google Scholar 

  • McArdle WD, Katch FI, Katch VL (1996) Exercise physiology, energy, nutrition and human performance. Williams & Wilkins, Baltimore, p 147

    Google Scholar 

  • Molen NH (1973) Energy–speed relation of below-knee amputees walking on a motor-driven treadmill. Int Z Angew Physiol 31:173–185

    PubMed  CAS  Google Scholar 

  • Passmore R, Durnin JV (1955) Human energy expenditure. Physiol Rev 35:801–840

    PubMed  CAS  Google Scholar 

  • Ralston HJ (1958) Energy–speed relation and optimal speed during level walking. Int Z Angew Physiol 17:277–283

    PubMed  CAS  Google Scholar 

  • Robinson JL, Smidt GL, Arora JS (1977) Accelerographic, temporal and distance gait factors in below knee amputees. Phys Ther 57(8):898–904

    PubMed  CAS  Google Scholar 

  • Saunders JB, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Joint Surg 35-A:543–558

    PubMed  CAS  Google Scholar 

  • Scherer RF, Dowling JJ, Frost G, Robinson M, McLean K (1999) Mechanical and metabolic work of persons with lower-extremity amputations walking with titanium and stainless steel prostheses: a preliminary study. J Prosthet Orthot 11:38–42

    Article  Google Scholar 

  • Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16:255–263

    Article  PubMed  Google Scholar 

  • Sin SW, Chow DH, Cheng JC (2001) Significance of non-level walking on transtibial prosthesis fitting with particular reference to the effects of anterior–posterior alignment. J Rehabil Res Dev 38:1–6

    PubMed  CAS  Google Scholar 

  • Sulzle H, Pagliarulo M, Rodgers M, Jordan C (1978) Energetics of amputee gait. Orthop Clin North Am 9:358–362

    PubMed  CAS  Google Scholar 

  • Tesio L, Roi GS, Möller F (1991) Pathological gaits: inefficiency is not a rule. Clin Biomech 6:47–50

    Article  Google Scholar 

  • Tesio L, Lanzi D, Detrembleur C (1998) The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees. Clin Biomech 13:83–90

    Article  Google Scholar 

  • Torburn L, Powers CM, Guiterrez R, Perry J (1995) Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. J Rehabil Res Dev 32(2):111–119

    PubMed  CAS  Google Scholar 

  • Waters RL, Perry J, Antonelli D, Hislop H (1976) Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am 58(1):42–46

    PubMed  CAS  Google Scholar 

  • Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393

    PubMed  CAS  Google Scholar 

  • Zarrugh MY, Todd FN, Ralston HJ (1974) Optimization of energy expenditure during level walking. Eur J Appl Physiol Occup Physiol 33:293–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mr. N. Lopez for his skillful help during the experimentation in Cambodia. This study was supported by the Fonds National de la Recherche Scientifique of Belgium, the Fonds Spéciaux de Recherche of UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Willems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, J.J., Bastien, G.J., Franck, B. et al. Effect of speed on the energy cost of walking in unilateral traumatic lower limb amputees. Eur J Appl Physiol 103, 655–663 (2008). https://doi.org/10.1007/s00421-008-0764-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0764-0

Keywords

Navigation