Skip to main content
Log in

Effects of concentric and repeated eccentric exercise on muscle damage and calpain–calpastatin gene expression in human skeletal muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare the responsiveness of changes in Ca2+-content and calpain–calpastatin gene expression to concentric and eccentric single-bout and repeated exercise. An exercise group (n = 14) performed two bouts of bench-stepping exercise with 8 weeks between exercise bouts, and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses as well as plasma levels of creatine kinase and myoglobin were all attenuated after the repeated eccentric exercise bout (P < 0.05). Total muscle Ca2+-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P < 0.05), with no alteration in expression between bouts. Calpain 1 and calpain 3 mRNA did not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain–calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function, no immediate support was provided to suggest that regulation of expression of specific system components is involved in the repeated bout adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arendt-Nielsen L (2002) Clinical use of pain measurement techniques. Ugeskr Laeger 164:1790–1795

    PubMed  Google Scholar 

  • Belcastro AN (1993) Skeletal muscle calcium-activated neutral protease (calpain) with exercise. J Appl Physiol 74:1381–1386

    PubMed  CAS  Google Scholar 

  • Belcastro AN, Shewchuk LD, Raj DA (1998) Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 179:135–145

    Article  PubMed  CAS  Google Scholar 

  • Busquets S, Garcia-Martinez C, Alvarez B, Carbo N, Lopez-Soriano FJ, Argiles JM (2000) Calpain-3 gene expression is decreased during experimental cancer cachexia. Biochim Biophys Acta 1475:5–9

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.9999

    Article  PubMed  CAS  Google Scholar 

  • Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143. doi:10.1016/j.ab.2005.05.022

    Article  PubMed  CAS  Google Scholar 

  • Dietrichson P, Coakley J, Smith PE, Griffiths RD, Helliwell TR, Edwards RH (1987) Conchotome and needle percutaneous biopsy of skeletal muscle. J Neurol Neurosurg Psychiatry 50:1461–1467

    PubMed  CAS  Google Scholar 

  • Edwards RH, Young A, Hosking GP, Jones DA (1977) Human skeletal muscle function: description of tests and normal values. Clin Sci Mol Med 52:283–290

    PubMed  CAS  Google Scholar 

  • Feasson L, Stockholm D, Freyssenet D, Richard I, Duguez S, Beckmann JS, Denis C (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543:297–306

    Article  PubMed  CAS  Google Scholar 

  • Fluck M, Dapp C, Schmutz S, Wit E, Hoppeler H (2005) Transcriptional profiling of tissue plasticity: role of shifts in gene expression and technical limitations. J Appl Physiol 99:397–413. doi:10.1152/japplphysiol.00050.2005

    Article  PubMed  CAS  Google Scholar 

  • Friden J, Sjostrom M, Ekblom B (1983) Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4:170–176

    Article  PubMed  CAS  Google Scholar 

  • Gissel H, Clausen T (1999) Excitation-induced Ca2+ uptake in rat skeletal muscle. Am J Physiol 276:R331–R339

    PubMed  CAS  Google Scholar 

  • Gissel H, Clausen T (2001) Excitation-induced Ca2+ influx and skeletal muscle cell damage. Acta Physiol Scand 171:327–334

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801. doi:10.1152/physrev.00029.2002

    PubMed  CAS  Google Scholar 

  • Huang J, Forsberg NE (1998) Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci USA 95:12100–12105

    Article  PubMed  CAS  Google Scholar 

  • Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:C834–C843. doi:10.1152/ajpcell.00579.2003

    Article  PubMed  CAS  Google Scholar 

  • Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA, Pedersen BK (2000) Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol 528(Pt 1):157–163

    Article  PubMed  CAS  Google Scholar 

  • Kinbara K, Ishiura S, Tomioka S, Sorimachi H, Jeong SY, Amano S, Kawasaki H, Kolmerer B, Kimura S, Labeit S, Suzuki K (1998) Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J 335(Pt 3):589–596

    PubMed  CAS  Google Scholar 

  • Konig N, Raynaud F, Feane H, Durand M, Mestre-Frances N, Rossel M, Ouali A, Benyamin Y (2003) Calpain 3 is expressed in astrocytes of rat and Microcebus brain. J Chem Neuroanat 25:129–136

    Article  PubMed  CAS  Google Scholar 

  • Larsen RG, Ringgaard S, Overgaard K (2007) Localization and quantification of muscle damage by magnetic resonance imaging following step exercise in young women. Scand J Med Sci Sports 17:76–83. doi:10.1111/j.1600-0838.2006.00525.x

    PubMed  CAS  Google Scholar 

  • Mahoney DJ, Carey K, Fu MH, Snow R, Cameron-Smith D, Parise G, Tarnopolsky MA (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18:226–231. doi:10.1152/physiolgenomics.00067.2004

    Article  PubMed  CAS  Google Scholar 

  • Malm C (2001) Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol Scand 171:233–239

    Article  PubMed  CAS  Google Scholar 

  • McHugh MP (2003) Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports 13:88–97

    Article  PubMed  Google Scholar 

  • Murphy RM, Goodman CA, McKenna MJ, Bennie J, Leikis M, Lamb GD (2007) Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. J Appl Physiol 103:926–931. doi:10.1152/japplphysiol.01422.2006

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard A, Vissing K, Overgaard K, Kjaer M, Schjerling P (2007) Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol 103:1513–1522. doi:10.1152/japplphysiol.01445.2006

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Jones DA, Edwards RH (1983) Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve 6:380–385. doi:10.1002/mus.880060507

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Sakamoto K, Newton M, Sacco P (2001) How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sports Exerc 33:1490–1495

    Article  PubMed  CAS  Google Scholar 

  • Nosaka K, Newton MJ, Sacco P (2005) Attenuation of protective effect against eccentric exercise-induced muscle damage. Can J Appl Physiol 30:529–542

    PubMed  Google Scholar 

  • Overgaard K, Fredsted A, Hyldal A, Ingemann-Hansen T, Gissel H, Clausen T (2004) Effects of running distance and training on Ca2+ content and damage in human muscle. Med Sci Sports Exerc 36:821–829

    Article  PubMed  CAS  Google Scholar 

  • Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Leveziel H (2005a) Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys 440:46–53. doi:10.1016/j.abb.2005.05.028

    Article  PubMed  CAS  Google Scholar 

  • Raynaud P, Jayat-Vignoles C, Laforet MP, Leveziel H, Amarger V (2005b) Four promoters direct expression of the calpastatin gene. Arch Biochem Biophys 437:69–77. doi:10.1016/j.abb.2005.02.026

    Article  PubMed  CAS  Google Scholar 

  • Schjerling P (2001) The importance of internal controls in mRNA quantification. J Appl Physiol 90:401–402

    PubMed  CAS  Google Scholar 

  • Sorichter S, Mair J, Koller A, Gebert W, Rama D, Calzolari C, Artner-Dworzak E, Puschendorf B (1997) Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol 83:1076–1082

    PubMed  CAS  Google Scholar 

  • Sorimachi H, Toyama-Sorimachi N, Saido TC, Kawasaki H, Sugita H, Miyasaka M, Arahata K, Ishiura S, Suzuki K (1993) Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem 268:10593–10605

    PubMed  CAS  Google Scholar 

  • Spencer MJ, Lu B, Tidball JG (1997) Calpain II expression is increased by changes in mechanical loading of muscle in vivo. J Cell Biochem 64:55–66. doi:10.1002/(SICI)1097-4644(199701)64:1

    Article  PubMed  CAS  Google Scholar 

  • Stupka N, Tarnopolsky MA, Yardley NJ, Phillips SM (2001) Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 91:1669–1678

    PubMed  CAS  Google Scholar 

  • Tidball JG, Spencer MJ (2002) Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545:819–828

    Article  PubMed  CAS  Google Scholar 

  • Vissing K, Andersen JL, Schjerling P (2005) Are exercise-induced genes induced by exercise? FASEB J 19:94–96. doi:10.1096/fj.04-2084fje

    PubMed  CAS  Google Scholar 

  • Warren GL, Lowe DA, Armstrong RB (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Med 27:43–59

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Fareed MU, Evenson A, Menconi MJ, Yang H, Petkova V, Hasselgren PO (2005) Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Physiol Regul Integr Comp Physiol 288:R580–R590. doi:10.1152/ajpregu.00341.2004

    PubMed  CAS  Google Scholar 

  • Williams AB, Decourten-Myers GM, Fischer JE, Luo G, Sun X, Hasselgren PO (1999) Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J 13:1435–1443

    PubMed  CAS  Google Scholar 

  • Yeung EW, Allen DG (2004) Stretch-activated channels in stretch-induced muscle damage: role in muscular dystrophy. Clin Exp Pharmacol Physiol 31:551–556. doi:10.1111/j.1440-1681.2004.04027.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the Danish Health Research Agency (grants no. 22-04-0454), the Ministry of Culture (grant no. 2004-05-029), the NovoNordisk Foundation, Hovedstadens Sygehusfaellesskab and the Medical Faculty at the University of Copenhagen. Furthermore, we would like to thank Thorsten Ingemann Hansen for clinical assistance and Anne Mette Kloster for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Vissing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PPT 525 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vissing, K., Overgaard, K., Nedergaard, A. et al. Effects of concentric and repeated eccentric exercise on muscle damage and calpain–calpastatin gene expression in human skeletal muscle. Eur J Appl Physiol 103, 323–332 (2008). https://doi.org/10.1007/s00421-008-0709-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0709-7

Keywords

Navigation