Skip to main content
Log in

Estimation of maximal heart rate using the relationship between heart rate variability and exercise intensity in 40–67 years old men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Large interindividual variation in maximal heart rate (HRmax) may not be accounted for by age alone. In order to evaluate a novel method in the prediction of HRmax, this study examined the profile of HR variability (HRV) during exercise in 40–67 years old men (n = 74). R–R intervals were recorded during supine rest and during a graded exercise test by cycle ergometry until exhaustion. A third-degree polynomial function was fitted to the HRV data recorded during exercise to represent the HRV profile of each subject. The instantaneous beat-to-beat R–R interval variability (SD1), high (HF) and low frequency power decreased between all consecutive exercise intensities (P < 0.033). The relationship between HRmax and a variable illustrating the declining rate of HF (HRHF50%) was stronger (r = 0.50, P < 0.001) than between HRmax and age (r = −0.36, P < 0.01). The regression analysis showed that a more accurate estimation of HRmax was attained when HRV was used in the equation in addition to age: HRmax = 160.633–0.603(age) + 0.441(HRHF50%) (SEE = 9.8 bpm vs. 11.6 bpm in the equation based on age alone). The decline of HRV during incremental exercise seems to be useful for accurate estimation of maximal heart rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American College of Sports Medicine (2006) ACSM’s Guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Åstrand PO, Bergh U, Kilbom A (1997) A 33-yr follow-up of peak oxygen uptake and related variables of former physical education students. J Appl Physiol 82:1844–1852

    PubMed  Google Scholar 

  • Åstrand PO, Ryhming I (1954) A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol 7:218–221

    PubMed  Google Scholar 

  • Balmer J, Potter CR, Bird SR, Davison RC (2005) Age-related changes in maximal power and maximal heart rate recorded during a ramped test in 114 cyclists age 15–73 years. J Aging Phys Act 13:75–86

    PubMed  Google Scholar 

  • Caputo F, Denadai BS (2004) Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise. Eur J Appl Physiol 93:87–95

    Article  PubMed  CAS  Google Scholar 

  • Cottin F, Lepretre PM, Lopes P, Papelier Y, Medigue C, Billat V (2006) Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 27:959–967

    Article  PubMed  CAS  Google Scholar 

  • Cottin F, Medigue C, Lopes P, Lepretre PM, Heubert R, Billat V (2007) Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med 28:287–294

    Article  PubMed  CAS  Google Scholar 

  • De Meersman RE (1993) Heart rate variability and aerobic fitness. Am Heart J 125:726–731

    Article  PubMed  Google Scholar 

  • Fairbarn MS, Blackie SP, McElvaney NG, Wiggs BR, Pare PD, Pardy RL (1994) Prediction of heart rate and oxygen uptake during incremental and maximal exercise in healthy adults. Chest 105:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Fernhall B, McCubbin JA, Pitetti KH, Rintala P, Rimmer JH, Millar AL, De Silva A (2001) Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc 33:1655–1660

    Article  PubMed  CAS  Google Scholar 

  • Fleg JL (1986) Alterations in cardiovascular structure and function with advancing age. Am J Cardiol 57:33C–44C

    Article  PubMed  CAS  Google Scholar 

  • Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc 38:887–893

    Article  PubMed  Google Scholar 

  • Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39:822–829

    PubMed  Google Scholar 

  • Gregoire J, Tuck S, Yamamoto Y, Hughson RL (1996) Heart rate variability at rest and exercise: influence of age, gender, and physical training. Can J Appl Physiol 21:455–470

    PubMed  CAS  Google Scholar 

  • Hautala AJ, Makikallio TH, Seppanen T, Huikuri HV, Tulppo MP (2003) Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging 23:215–223

    Article  PubMed  Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    PubMed  CAS  Google Scholar 

  • Inbar O, Oren A, Scheinowitz M, Rotstein A, Dlin R, Casaburi R (1994) Normal cardiopulmonary responses during incremental exercise in 20- to 70-yr-old men. Med Sci Sports Exerc 26:538–546

    PubMed  CAS  Google Scholar 

  • Izquierdo M, Hakkinen K, Ibanez J, Kraemer WJ, Gorostiaga EM (2005) Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol 94:70–75

    Article  PubMed  Google Scholar 

  • Jurca R, Church TS, Morss GM, Jordan AN, Earnest CP (2004) Eight weeks of moderate-intensity exercise training increases heart rate variability in sedentary postmenopausal women. Am Heart J 147:e21

    Article  PubMed  Google Scholar 

  • Kingsley M, Lewis MJ, Marson RE (2005) Comparison of Polar 810s and an ambulatory ECG system for RR interval measurement during progressive exercise. Int J Sports Med 26:39–44

    Article  PubMed  CAS  Google Scholar 

  • Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6:197–201

    Article  PubMed  CAS  Google Scholar 

  • Leicht AS, Allen GD, Hoey AJ (2003) Influence of intensive cycling training on heart rate variability during rest and exercise. Can J Appl Physiol 28:898–909

    PubMed  Google Scholar 

  • Lewis MJ, Kingsley M, Short AL, Simpson K (2007) Rate of reduction of heart rate variability during exercise as an index of physical work capacity. Scand J Med Sci Sports 17:696–702

    Article  PubMed  CAS  Google Scholar 

  • Londeree BR, Moeschberger ML (1982) Effect of age and other factors on maximal heart rate. Res Q Exerc Sport 53:297–304

    Google Scholar 

  • Maritz JS, Morrison JF, Peter J, Strydom NB, Wyndham CH (1961) A practical method of estimating an individual’s maximal oxygen intake. Ergonomics 4:97–122

    Article  Google Scholar 

  • McGuire DP (1986) The occurrence of an increase in correlation with explicit selection. Psychometrika 51:331

    Article  Google Scholar 

  • Melanson EL, Freedson PS (2001) The effect of endurance training on resting heart rate variability in sedentary adult males. Eur J Appl Physiol 85:442–449

    Article  PubMed  CAS  Google Scholar 

  • Mikkola JS, Rusko HK, Nummela AT, Paavolainen LM, Hakkinen K (2007) Concurrent endurance and explosive type strength training increases activation and fast force production of leg extensor muscles in endurance athletes. J Strength Cond Res 21:613–620

    Article  PubMed  Google Scholar 

  • Perini R, Milesi S, Fisher NM, Pendergast DR, Veicsteinas A (2000) Heart rate variability during dynamic exercise in elderly males and females. Eur J Appl Physiol 82:8–15

    Article  PubMed  CAS  Google Scholar 

  • Pichot V, Roche F, Denis C, Garet M, Duverney D, Costes F, Barthelemy JC (2005) Interval training in elderly men increases both heart rate variability and baroreflex activity. Clin Auton Res 15:107–115

    Article  PubMed  Google Scholar 

  • Robergs RA, Landwehr R (2002) The surprising history of the “HRmax = 220-age” equation. J Exerc Physiol 5:1–10

    Google Scholar 

  • Sandercock GR, Brodie DA (2006) The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports 16:302–313

    Article  PubMed  CAS  Google Scholar 

  • Schiller BC, Casas YG, Desouza CA, Seals DR (2001) Maximal aerobic capacity across age in healthy Hispanic and Caucasian women. J Appl Physiol 91:1048–1054

    PubMed  CAS  Google Scholar 

  • Siconolfi SF, Cullinane EM, Carleton RA, Thompson PD (1982) Assessing VO2max in epidemiologic studies: modification of the Astrand-Rhyming test. Med Sci Sports Exerc 14:335–338

    PubMed  CAS  Google Scholar 

  • Stejskal P, Rechbergová J, Salinger J, Šlachta R, Elfmark M, Kalina M, Jurča R, Řehová I (2001) Power spectrum of heart rate variability in exercising humans: the effect of exercise intensity. Sports Med Train Rehab 10:39–57

    Google Scholar 

  • Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156

    Article  PubMed  CAS  Google Scholar 

  • Tschopp M, Peltola K, Held T, Kinnunen H, Hannula M, Laukkanen R, Marti B (2000) Traditionelle und neue Ansätze zur Schätzung der maximalen Sauerstoffaufnahme in Ruhe. Schweiz Z Sportmed Sporttraumatologie 48:58–63

    Google Scholar 

  • Tulppo MP, Makikallio TH, Seppanen T, Laukkanen RT, Huikuri HV (1998) Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol 274:H424–H429

    PubMed  CAS  Google Scholar 

  • Tulppo MP, Makikallio TH, Takala TE, Seppanen T, Huikuri HV (1996) Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol 271:H244–H252

    PubMed  CAS  Google Scholar 

  • Whaley MH, Kaminsky LA, Dwyer GB, Getchell LH, Norton JA (1992) Predictors of over- and underachievement of age-predicted maximal heart rate. Med Sci Sports Exerc 24:1173–1179

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Hughson RL, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by grants from the Ministry of Education, Finland and the Central Finland Health Care District, Jyväskylä, Finland, and by Polar Electro Oy, Kempele, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Karavirta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karavirta, L., Tulppo, M.P., Nyman, K. et al. Estimation of maximal heart rate using the relationship between heart rate variability and exercise intensity in 40–67 years old men. Eur J Appl Physiol 103, 25–32 (2008). https://doi.org/10.1007/s00421-007-0667-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0667-5

Keywords

Navigation