Skip to main content
Log in

Non-linear function model of voice pitch dependency on physical and mental load

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The present work describes that under increasing physical load the voice fundamental frequency (voice pitch) remains on a given level as long as the physical load is well tolerated by the subject, whereas heart rate and blood pressure continuously increase during increasing physical load. This voice pitch level was compared to voice pitch levels under mental load. Using a word recognition system, 11 well trained, young male subjects had to solve 2 moderate mental load tasks. Before, during and after each task, there were structured relaxation phases. The physical load protocol was a standard bicycle stress test. In each protocol phase the subjects had to count from 1 to 10 in order to provide a standardized speech sample. Heart rate and blood pressure were recorded in all phases. Voice frequency was at average 106 ± 5.2 Hz in the relaxation phases (‘rest level’) and was increased under mental load (115.9 ± 5.7 Hz, Pillais-P = 0.037). During physical stress testing, voice pitch remained unchanged (‘tolerated load level’) between 100 and 200 W (117.4 ± 4.8 Hz) and increased shortly before physical exhaustion (‘exhaustion level’, 275–350 W, 142.9 ± 5.6 Hz, Pillais-P = 0.007). In contrast, heart rate and blood pressure increased continuously with the physical load. Three voice pitch levels could be verified also individually for each subject. For the practical monitoring of emotional stress the individual anchor frequencies for these levels must be assessed. These data indicate that the relationship between both types of load and voice pitch is non-linear with multiple plateaus and transition functions between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Friedrich J, Vaic H (1978) Sprachanalyse in der Luft- und Raumfahrtmedizin. Z Militärmed 6:259–262

    Google Scholar 

  • Johannes B, Eichhorn C, Fischer F (1994) A complex experimental assessment for objective hierarchical description of hierarchical psychophysiological behavior as human regulatory phenotype. Proceedings of the IUPS-Meeting Gravitational Physiology, Barcelona, 3–7 10 1993. J Gravit Physiol 1:P73–74

    PubMed  CAS  Google Scholar 

  • Johannes B, Salnitski VP, Haller H, Wilke D, Fischer F, Schlykova L (1995) Comparison of voice stress reactivity under psychological stress test and simulated MIR-docking-maneuver. J Gravit Physiol 2:107–108

    Google Scholar 

  • Johannes B., Salnitski VP, Gunga HC, Kirsch K (2000) Voice stress monitoring in space- possibilities and limits. Aviat Space Environ Med 71:A58–65

    PubMed  CAS  Google Scholar 

  • Johannes B, Salnitski VP, Thieme K , Kirsch K (2003a) Differences in the autonomic reactivity pattern to psychological load in patients with hypertension and Rheumatic diseases, Aviakosm Ekolog Med 37:28–42

    PubMed  CAS  Google Scholar 

  • Johannes B, Salnitski VP, Polyakov VV, Kirsch K (2003b) Changes in the Autonomic Reactivity Pattern to Psychological Load under Long-term Microgravity - Twelve men during 6-month spaceflights. Aviakosm Ekolog Med 37:6–16

    PubMed  CAS  Google Scholar 

  • Lieberman P. Michaels SB (1962) Some aspects of fundamental frequency, envelope amplitude and the emotional content of speech. J Acoust Soc Am 34:922–927

    Article  Google Scholar 

  • Lüdge W, Gips P (1986) A new method for microprocessor-based real-time measurement of pitch detection on speech signals. In: Hofmann D (ed) Intelligent Measurement. International Measurement Confederation 1, pp 253–256

  • Martin CE, Shaver JA, Leon DF, Thompson ME, Reddy PS, Leonard JJ (1974) Autonomic mechanisms in hemodynamic responses to isometric exercise. J Clin Invest 54:104–115

    Article  PubMed  CAS  Google Scholar 

  • Mohler JG (1982) Quantification of dyspnea confirmed by voice pitch analysis. Bull Eur Physiopathol Respir 18:837–850

    PubMed  CAS  Google Scholar 

  • Nedkov R (1993) System for intelligent digital biosignal processing on space board. Aerosp Res Bulgaria 9:65–70

    Google Scholar 

  • Niwa S (1970) Changes of voice characteristics in urgent situations (1). Rep Aeromed Lab JASDF 11:51–58

    Google Scholar 

  • Protopapas A, Lieberman P (1997) Fundamental frequency of phonation and perceived emotional stress. J Acoust Soc Am 101:2267–77

    Article  PubMed  CAS  Google Scholar 

  • Scherer KR (1979) Nonlinguistic vocal indicators of emotion and psychopathology. In: Izard CE (ed) Emotions and psychopathology. Plenum, New York, pp 493–529

    Google Scholar 

  • Scherer KR, Zei B (1988) Vocal indicators of affective disorders. Psychother Psychosom 49:179–186

    Article  PubMed  CAS  Google Scholar 

  • Scherer KR, Wallbott HG, Tolkmitt FJ, Bergmann G (1985) Die Streßreaktion: Physiologie und Verhalten. Hogrefe, Göttingen

    Google Scholar 

  • Steptoe A, Vögele C (1991) Methodology of mental stress testing in cardiovascular research. Circulation 83:1114–1124

    Google Scholar 

  • Streeter LA, Macdonald NH, Apple W, Krauss RM, Galotti KM (1983) Acoustic and perceptual indicators of emotional stress. J Acoust Soc Am 73:1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Sulc J, Remek V (1986) Possibilities and limits of using speech signals in aviation and space psychophysiology. Acta Neurobiol Exp 48:347–352

    Google Scholar 

  • Suls J, Fletcher B (1985) The relative efficacy of avoidant and non-avoidant coping strategies: a meta-analysis. Health Psychol 4:249–288

    Article  PubMed  CAS  Google Scholar 

  • Tolkmitt FJ, Scherer KR (1986) Effect of experimentally induced stress on vocal parameters. J Exp Psychol Hum Percept Perform 12:302–313

    Article  PubMed  CAS  Google Scholar 

  • Utsuki N (1988) Vocal pitch change: loudness of voice and effects of oxygen mask. Rep Aeromed Lab 29:53–59

    Google Scholar 

  • Vaic H (1989) Zur Auswirkung unterschiedlicher Flugfaktoren auf Parameter der Sprache beim Flugfunkverkehr in der Luft- und Raumfahrt. Z Klin Med 20:1751–1754

    Google Scholar 

  • Vaic H, Friedrich J (1982) Der Einfluß von physischer und mental-konzentrativer Belastung auf die Grundfrequenz der Sprache von Operateuren. Ein Beitrag zur Sprachanalyse in der Luft- und Raumfahrtmedizin. Z Militärmed 1:26–31

    Google Scholar 

  • Williams CE, Stevens KN (1969) On determining the emotional state of pilots during flight: an exploratory study. Aerosp Med 40:1369–1372

    Google Scholar 

  • Wittels P, Rosenmayr G, Bischof B, Hartter E, Haber P (1994) Aerobic fitness and sympatho-adrenal response to short-term psycho-emotional stress under field conditions. Eur J Appl Physiol 68:418–424

    Article  CAS  Google Scholar 

  • Wittels P, Johannes B, Enne R, Kirsch K, Gunga HC (2002) Voice monitoring to measure emotional load in short-time stress. Eur J Appl Physiol 87:278–282

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Johannes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannes, B., Wittels, P., Enne, R. et al. Non-linear function model of voice pitch dependency on physical and mental load. Eur J Appl Physiol 101, 267–276 (2007). https://doi.org/10.1007/s00421-007-0496-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0496-6

Keywords

Navigation