Skip to main content
Log in

Is aerobic endurance a determinant of cardiac autonomic regulation?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine if subjects matched for \({\dot{V}}\hbox{O}_{\rm 2\,max}\) but with differing aerobic endurance displayed similar heart rate variability (HRV) at rest and heart rate recovery (HRR) after maximal exercise. We hypothesized that the higher the aerobic endurance, the higher the HRV and the faster the HRR. Twenty-eight well trained middle- and long-distance runners (24 men and 4 women) performed a maximal continuous graded exercise test for the determination of maximal oxygen consumption \(({\dot{V}\hbox{O}_{2\,\rm max}}),\) ventilatory threshold (VT), peak treadmill velocity (PTV) and HRR, as well as a test to measure the autonomic regulation of heart rate during supine rest, using HRV analysis. Once both tests were completed, subjects were matched for \({\dot{V}\hbox{O}_{2\,\rm max}}\) and assigned to the low endurance or the high endurance group, depending on the %PTV at which VT occurred (81.9 ± 2.9 and 88.3 ± 3.1%PTV for both groups, respectively; P < 0.0001). Contrary to our hypotheses, neither HRV nor HRR parameters were different between groups or associated with aerobic endurance. \({\dot{V}}\hbox{O}_{\rm 2\,max}\) (59.0±7.3 ml min−1 kg−1) was inversely correlated with ln SDNN (r = −0.44, P < 0.05), ln HF (r = −0.52,  P < 0.05), ln LF + HF (r = −0.53, P < 0.05). These results suggest that aerobic endurance is not associated with cardiovascular autonomic control, as measured by HRV and HRR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ (2004) Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 93:381–385

    Article  PubMed  Google Scholar 

  • Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256:H132–H141

    PubMed  CAS  Google Scholar 

  • Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919

    Article  PubMed  Google Scholar 

  • Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol Occup Physiol 53:260–266

    Article  PubMed  CAS  Google Scholar 

  • Bosquet L, Leger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32:675–700

    Article  PubMed  Google Scholar 

  • Buchheit M, Gindre C (2006) Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol 291:H451-H458

    CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates edn, Hillsdale

    Google Scholar 

  • di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55:259–266

    Article  PubMed  Google Scholar 

  • Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2 max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278

    PubMed  CAS  Google Scholar 

  • Freeman R (2004) Assessment of cardiovascular autonomic function. Suppl Clin Neurophysiol 57:369–375

    Article  PubMed  Google Scholar 

  • Gamelin FX, Berthoin S, Bosquet L (2006) Validity of the polar S810 heart rate monitor to measure R–R intervals at rest. Med Sci Sports Exerc 38:887–893

    Article  PubMed  Google Scholar 

  • Goldberger JJ, Kim YH, Ahmed MW, Kadish AH (1996) Effect of graded increases in parasympathetic tone on heart rate variability. J Cardiovasc Electrophysiol 7:594–602

    PubMed  CAS  Google Scholar 

  • Green JM, Crews TR, Bosak AM, Peveler WW (2003) A comparison of respiratory compensation thresholds of anaerobic competitors, aerobic competitors and untrained subjects. Eur J Appl Physiol 90:608–613

    Article  PubMed  Google Scholar 

  • Hedelin R, Wiklund U, Bjerle P, Henriksson-Larsen K (2000) Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc 32:1531–1533

    Article  PubMed  CAS  Google Scholar 

  • Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, Takeda H, Inoue M, Kamada T (1994) Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol 24:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Javorka M, Zila I, Balharek T, Javorka K (2002) Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz J Med Biol Res 35:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Kuch B, Hense HW, Sinnreich R, Kark JD, von Eckardstein A, Sapoznikov D, Bolte HD (2001) Determinants of short-period heart rate variability in the general population. Cardiology 95:131–138

    Article  PubMed  CAS  Google Scholar 

  • Lee CM, Wood RH, Welsch MA (2003) Influence of short-term endurance exercise training on heart rate variability. Med Sci Sports Exerc 35:961–969

    Article  PubMed  Google Scholar 

  • Leicht A, Allen G, Hoey A (2003) Influence of intensive cycling training on heart rate variability during rest and exercise. Can J Appl Physiol 28:898–909

    PubMed  Google Scholar 

  • Malpas SC, Maling TJ (1990) Heart-rate variability and cardiac autonomic function in diabetes. Diabetes 39:1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Melanson EL, Freedson PS (2001) The effect of endurance training on resting heart rate variability in sedentary adult males. Eur J Appl Physiol 85:442–449

    Article  PubMed  CAS  Google Scholar 

  • Perini R, Orizio C, Comande A, Castellano M, Beschi M, Veicsteinas A (1989) Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. Eur J Appl Physiol Occup Physiol 58:879–883

    Article  PubMed  CAS  Google Scholar 

  • Peronnet F, Aguilaniu B (2006) Lactic acid buffering, non-metabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol 150:4–18

    Article  PubMed  Google Scholar 

  • Peronnet F, Thibault G (1989) Mathematical analysis of running performance and world running records. J Appl Physiol 67:453–465

    PubMed  CAS  Google Scholar 

  • Peronnet F, Thibault G, Rhodes EC, McKenzie DC (1987) Correlation between ventilatory threshold and endurance capability in marathon runners. Med Sci Sports Exerc 19:610–615

    PubMed  CAS  Google Scholar 

  • Pichot V, Busso T, Roche F, Garet M, Costes F, Duverney D, Lacour J, Barthelemy J (2002) Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc 34:1660–1666

    Article  PubMed  Google Scholar 

  • Sandercock GR, Shelton C, Bromley P, Brodie DA (2004) Agreement between three commercially available instruments for measuring short-term heart rate variability. Physiol Meas 25:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Sandercock GR, Bromley PD, Brodie DA (2005) The reliability of short-term measurements of heart rate variability. Int J Cardiol 103:238–247

    Article  PubMed  Google Scholar 

  • Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ (1988) Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 61:1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Task-Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Google Scholar 

  • Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events. The Framingham heart study. Circulation 94:2850–2855

    PubMed  CAS  Google Scholar 

  • Uusitalo AL, Laitinen T, Vaisanen SB, Lansimies E, Rauramaa R (2002) Effects of endurance training on heart rate and blood pressure variability. Clin Physiol Funct Imaging 22:173–179

    Article  PubMed  Google Scholar 

  • Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26:1553–1579

    Article  PubMed  Google Scholar 

  • Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bosquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosquet, L., Gamelin, FX. & Berthoin, S. Is aerobic endurance a determinant of cardiac autonomic regulation?. Eur J Appl Physiol 100, 363–369 (2007). https://doi.org/10.1007/s00421-007-0438-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0438-3

Keywords

Navigation