Skip to main content

Advertisement

Log in

Mild exercise training, cardioprotection and stress genes profile

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

To improve current knowledge of the molecular mechanisms underlying exercise-induced cardioprotection in a rat model of mild exercise training, Sprague–Dawley rats were trained to run on a treadmill up to 55% of their maximal oxygen uptake for 1 h/day, 3 days/week, 14 weeks, with age-matched sedentary controls (n = 20/group). Rats were sacrificed 48 h after the last training session. Despite lack of cardiac hypertrophy, training decreased blood hemoglobin (7.94 ± 0.21 mM vs. 8.78 ± 0.23 mM, mean ± SE, P = 0.01) and increased both plasma malondialdehyde (0.139 ± 0.005 mM vs. 0.085 ± 0.009 mM, P = 0.05) and the activity of Mn-superoxide dismutase (11.6 ± 0.6 vs. 16.5 ± 1.6 mU/μg, P = 0.01), whereas total superoxide dismutase activity was unaffected. When subjected to 30-min ischemia followed by 90-min reperfusion, hearts from trained rats (n = 5) displayed reduced infarct size as compared to controls (37.26 ± 0.92% vs. 49.09 ± 2.11% of risk area, P = 0.04). The biochemical analyses in the myocardium, which included gene expression profiles, real-time PCR, Western blot and determination of enzymatic activity, showed training-induced upregulation of the following mRNAs and/or proteins: growth-arrest and DNA-damage induced 153 (GADD153/CHOP), heme-oxygenase-1 (HO-1), cyclooxygenase-2 (Cox-2), heat-shock protein 70/72 (HSP70/72), whereas heat-shock protein 60 (HSP60) and glucose-regulated protein 75 (GRP75) were decreased. As a whole, these data indicate that mild exercise training activates a second window of myocardial protection against ischemia/reperfusion by upregulating a number of protective genes, thereby warranting further investigation in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bolli R (2000) The late phase of preconditioning. Circ Res 87(11):972–983

    PubMed  CAS  Google Scholar 

  • Bronikowski AM, Carter PA, Morgan TJ, Garland T Jr, Ung N, Pugh TD, Weindruch R, Prolla TA (2003) Lifelong voluntary exercise in the mouse prevents age-related alterations in gene expression in the heart. Physiol Genomics 12(2):129–138

    PubMed  CAS  Google Scholar 

  • Chicco AJ, Hydock DS, Schneider CM, Haywaerd R (2006) Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol 100(2):519–527

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  PubMed  CAS  Google Scholar 

  • Freimann S, Scheinowitz M, Yekutieli D, Feinberg MS, Eldar M, Kessler-Icekson G (2005) Prior exercise training improves the outcome of acute myocardial infarction in the rat. Heart structure, function, and gene expression. J Am Coll Cardiol 45(6):931–938

    Article  PubMed  Google Scholar 

  • Hearse DJ (1994) Myocardial ischaemia: can we agree on a definition for the 21st century? Cardiovasc Res 28(12):1737–1744

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (2002) Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci 959(Apr):82–92

    PubMed  CAS  Google Scholar 

  • Kawai S, Kasashima K, Tomita M (1989) High-performance liquid chromatographic determination of malondialdehyde in serum. J Chromatogr 495:235–238

    PubMed  CAS  Google Scholar 

  • Lennon SL, Quindry JC, French JP, Kim S, Mehta JL, Powers SK (2004) Exercise and myocardial tolerance to ischaemia-reperfusion. Acta Physiol Scand 182(2):161–169

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Kam KW, Borchert GH, Kravtsov GM, Ballard HJ, Wong TM (2006) Further study on the role of HSP70 on Ca2+ homeostasis in rat ventricular myocytes subjected to simulated ischemia. Am J Physiol Cell Physiol 290(2):C583–CC591

    Article  PubMed  CAS  Google Scholar 

  • Livak JK, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Melling CW, Thorp DB, Noble EG (2004) Regulation of myocardial heat shock protein 70 gene expression following exercise. J Mol Cell Cardiol 37(4):847–855

    Article  PubMed  CAS  Google Scholar 

  • Moran M, Delgado J, Gonzalez B, Manso R, Megias A (2004) Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training. Acta Physiol Scand 180(2):157–166

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Lennon SL, Quindry J, Mehta JL (2002) Exercise and cardioprotection. Curr Opin Cardiol 17(5):495–502

    Article  PubMed  Google Scholar 

  • Ronchi R, Marano L, Braidotti P, Bianciardi P, Calamia M, Fiorentini C, Samaja M (2004) Effects of broad band electromagnetic fields on HSP70 expression and ischemia-reperfusion in rat hearts. Life Sci 75(16):1925–1936

    Article  PubMed  CAS  Google Scholar 

  • Shek PN, Shephard RJ (1998) Physical exercise as a human model of limited inflammatory response. Can J Physiol Pharmacol 76(5):589–597

    Article  PubMed  CAS  Google Scholar 

  • Shinmura K, Xuan YT, Tang XL, Kodani E, Han H, Zhou Y, Bolli R (2002) Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning. Circ Res 90(5):602–608

    Article  PubMed  CAS  Google Scholar 

  • Schumacher YO, Schmid A, Grathwohl D, Bultermann D, Berg A (2002) Hematological indices and iron status in athletes of various sports and performances. Med Sci Sports Exerc 34(5):869–875

    Article  PubMed  Google Scholar 

  • Schweizer NB, Alessio HM, Hagerman AE, Sashwati R, Sen CK, Nagy S, Byrnes RN, Philip BN, Woodward JL, Wiley R (2005) Access to exercise and its relation to cardiovascular health and gene expression in laboratory animals. Life Sci 77(18):2246–2261

    Article  CAS  Google Scholar 

  • Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18(10):1150–1152

    PubMed  CAS  Google Scholar 

  • Starnes JW, Taylor RP, Ciccolo JT (2005) Habitual low-intensity exercise does not protect against myocardial dysfunction after ischemia in rats. Eur J Cardiovasc Prev Rehabil 12(2):169–174

    Article  PubMed  Google Scholar 

  • Stein AB, Tang X-L, Guo Y, Xuan YT, Dawn B, Bolli R (2004) Delayed adaptation of the heart to stress: Late preconditioning. Stroke 35(11 Suppl 1):2676–2679

    Article  PubMed  CAS  Google Scholar 

  • Strøm CC, Aplin M, Ploug T, Christoffersen TEH, Langfort J, Viese M, Galbo H, Haunsø S, Søren PS (2005) Expression profiling reveals differences in metabolic gene expression between exercise-induced cardiac effects and maladaptive cardiac hypertrophy. FEBS J 272(11):2684–2695

    Article  PubMed  CAS  Google Scholar 

  • Theodorakis N, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and Adenovirus infection on translation and mRNA stability. Mol Cell Biol 7(12):4357–4368

    PubMed  CAS  Google Scholar 

  • Vitadello M, Penzo D, Petronilli V, Michieli G, Gomirato S, Menabò R, Di Lisa F, Gorza L (2003) Overexpression of the stress-protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J 17(8):923–925

    PubMed  CAS  Google Scholar 

  • Wisloff U, Helgerud J, Kemi OJ, Ellingsen O (2001) Intensity-controlled treadmill running in rats: VO(2 max) and cardiac hypertrophy. Am J Physiol Heart Circ Physiol 280(3):H1301–H1310

    PubMed  CAS  Google Scholar 

  • Yet S-F, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee M-E, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    PubMed  CAS  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83(4):1113–1151

    PubMed  CAS  Google Scholar 

  • Yost HJ, Petersen RB, Lindquist S (1990) RNA metabolism: strategies for regulation in the heat shock response. Trends Genet 6(7):223–227

    Article  PubMed  CAS  Google Scholar 

  • Zhou JY, Prognon P (2006) Raw material enzymatic activity determination: a specific case for validation and comparison of analytical methods—the example of superoxide dismutase (SOD). J Pharm Biomed Anal 40(5):1143–1148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of the Italian Ministry of University and Research (PRIN 2004054720) and by Cariplo Foundation (2005 Project). Authors are grateful to dr. C. Ferreri for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Marini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

421_2006_369_MOESM1_ESM.pdf

421_2006_369_MOESM2_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marini, M., Lapalombella, R., Margonato, V. et al. Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol 99, 503–510 (2007). https://doi.org/10.1007/s00421-006-0369-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0369-4

Keywords

Navigation