Skip to main content
Log in

Motion sickness increases the risk of accidental hypothermia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Motion sickness (MS) has been found to increase body-core cooling during immersion in 28°C water, an effect ascribed to attenuation of the cold-induced peripheral vasoconstriction (Mekjavic et al. in J Physiol 535(2):619–623, 2001). The present study tested the hypothesis that a more profound cold stimulus would override the MS effect on peripheral vasoconstriction and hence on the core cooling rate. Eleven healthy subjects underwent two separate head-out immersions in 15°C water. In the control trial (CN), subjects were immersed after baseline measurements. In the MS-trial, subjects were rendered motion sick prior to immersion, by using a rotating chair in combination with a regimen of standardized head movements. During immersion in the MS-trial, subjects were exposed to an optokinetic stimulus (rotating drum). At 5-min intervals subjects rated their temperature perception, thermal comfort and MS discomfort. During immersion mean skin temperature, rectal temperature, the difference in temperature between the non-immersed right forearm and 3rd finger of the right hand (ΔT ff), oxygen uptake and heart rate were recorded. In the MS-trial, rectal temperature decreased substantially faster (33%, P < 0.01). Also, the ΔT ff response, an index of peripheral vasomotor tone, as well as the oxygen uptake, indicative of the shivering response, were significantly attenuated (P < 0.01 and P < 0.001, respectively) by MS. Thus, MS may predispose individuals to hypothermia by enhancing heat loss and attenuating heat production. This might have significant implications for survival in maritime accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Affolter JT, McKee SP, Helmy A, Jones CR, Newby DE, Webb DJ (2003) Intra-arterial vasopressin in the human forearm: pharmacodynamics and the role of nitric oxide. Clin Pharmacol Ther 74:9–16

    Article  PubMed  CAS  Google Scholar 

  • Aylward PE, Floras JS, Leimbach WN Jr, Abboud FM (1986) Effects of vasopressin on the circulation and its baroreflex control in healthy men. Circulation 73:1145–1154

    PubMed  CAS  Google Scholar 

  • Charkoudian N (2003) Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin Proc 78:603–612

    Article  PubMed  Google Scholar 

  • Cheung B, Hofer K (2001) Coriolis-induced cutaneous blood flow increase in the forearm and calf. Brain Res Bull 54:609–618

    Article  PubMed  CAS  Google Scholar 

  • Crampton GH (1955) Studies of motion sickness. XVII. Physiological changes accompanying sickness in man. J Appl Physiol 7:501–517

    PubMed  CAS  Google Scholar 

  • Drummer C, Stromeyer H, Riepl RL, Konig A, Strollo F, Lang RE, Maass H, Rocker L, Gerzer R (1990) Hormonal changes after parabolic flight: implications on the development of motion sickness. Aviat Space Environ Med 61:821–828

    PubMed  Google Scholar 

  • Eversmann T, Gottsmann M, Uhlich E, Ulbrecht G, von Werder K, Scriba PC (1978) Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat Space Environ Med 49:53–57

    PubMed  CAS  Google Scholar 

  • Eiken O, Tipton MJ, Kölegård R, Lindborg B, Mekjavic IB (2005). Motion sickness decreases arterial pressure and therefore acceleration tolerance. Aviat Space Environ Med 76:541–546

    PubMed  Google Scholar 

  • Golden F St C (1973) Death after rescue from immersion in cold water. J Roy Naval Med Serv 59:5–8

    Google Scholar 

  • Graybiel A (1969) Structural elements in the concept of motion sickness. Aerosp Med 40:351–367

    PubMed  CAS  Google Scholar 

  • Grigoriev AI, Nichiporuk IA, Yasnetsov VV, Shashkov VS (1988) Hormonal status and fluid electrolyte metabolism in motion sickness. Aviat Space Environ Med 59:301–305

    PubMed  CAS  Google Scholar 

  • Hemingway A (1944) Cold sweating in motion sickness. Am J Physiol 141:172–175

    Google Scholar 

  • Hervey GR (1973) Proceedings: physiological changes encountered in hypothermia. Proc R Soc Med 66:1053–1058

    PubMed  CAS  Google Scholar 

  • Hesse W (1874) Ein Beitrag zur Seekrankheit. Arch d Heilk 15:130–142

    Google Scholar 

  • Hirsch AT, Dzau VJ, Majzoub JA, Creager MA (1989) Vasopressin-mediated forearm vasodilation in normal humans. Evidence for a vascular vasopressin V2 receptor. J Clin Invest 84:418–426

    Article  PubMed  CAS  Google Scholar 

  • House JR, Tipton MJ (2002) Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation. Eur J Appl Physiol 88:141–145

    Article  PubMed  Google Scholar 

  • Johnson JM (1986) Nonthermoregulatory control of human skin blood flow. J Appl Physiol 61:1613–1622

    PubMed  CAS  Google Scholar 

  • Johnson WH, Sunahara FA, Landolt J (1993) Motion sickness, vascular changes accompanying pseudo-coriolis-induced nausea. Aviat Space Environ Med 64:367–369

    PubMed  CAS  Google Scholar 

  • Kim MS, Chey WD, Owyang C, Hasler WL (1997) Role of plasma vasopressin as a mediator of nausea and gastric slow wave dysrhythmias in motion sickness. Am J Physiol 272:G853–G862

    PubMed  CAS  Google Scholar 

  • Kohl RL (1992) beta-Endorphin and arginine vasopressin following stressful sensory stimuli in man. Aviat Space Environ Med 63:986–993

    PubMed  CAS  Google Scholar 

  • Kohl RL (1993) Autonomic function and plasma catecholamines following stressful sensory stimuli. Aviat Space Environ Med 64:921–927

    PubMed  CAS  Google Scholar 

  • Lindqvist M, Kahan T, Melcher A, Bie P, Hjemdahl P (1996) Forearm vasodilator mechanisms during mental stress: possible roles for epinephrine and ANP. Am J Physiol 270: E393–E399

    PubMed  CAS  Google Scholar 

  • Mekjavic IB, Tipton MJ, Gennser M, Eiken O (2001) Motion sickness potentiates core cooling during immersion in humans. J Physiol 535(2):619–623

    Article  PubMed  CAS  Google Scholar 

  • Mekjavic IB, Tipton MJ, Eiken O (2003) Thermal considerations in diving. In: Brubakk AO, Neuman TS (eds) Bennet and Elliott’s Physiology and medicine of diving. Saunders, Edinburgh, London, New York, Oxford, Philadelphia, St Louis, Sydney, Toronto, pp 115–152

    Google Scholar 

  • Romet TT (1988) Mechanism of afterdrop after cold water immersion. J Appl Physiol 65:1535–1538

    PubMed  CAS  Google Scholar 

  • Rubinstein EH, Sessler DI (1990) Skin-surface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology 73:541–545

    Article  PubMed  CAS  Google Scholar 

  • Schlegel TT, Brown TE, Wood SJ, Benavides EW, Bondar RL, Stein F, Moradshahi P, Harm DL, Fritsch-Yelle JM, Low PA (2001) Orthostatic intolerance and motion sickness after parabolic flight. J Appl Physiol 90:67–82

    PubMed  CAS  Google Scholar 

  • Sinha R (1968) Effect of vestibular Coriolis reaction on respiration and blood flow changes in man. Aerosp Med 39:837–844

    PubMed  CAS  Google Scholar 

  • Sunahara FA, Farewell J, Mintz L, Johnson WH (1987) Pharmacological interventions for motion sickness: cardiovascular effects. Aviat Space Environ Med 58:A270–A276

    PubMed  CAS  Google Scholar 

  • Wang ET, Zhou DR, He LH (1992) Histaminergic response to Coriolis stimulation: implication for transdermal scopolamine therapy of motion sickness. Aviat Space Environ Med 63:579–582

    PubMed  CAS  Google Scholar 

  • Webb P (1986) Afterdrop of body temperature during rewarming: an alternative explanation. J Appl Physiol 60:385–390

    PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 15(47):395–406

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Nobel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobel, G., Eiken, O., Tribukait, A. et al. Motion sickness increases the risk of accidental hypothermia. Eur J Appl Physiol 98, 48–55 (2006). https://doi.org/10.1007/s00421-006-0217-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0217-6

Keywords

Navigation