Skip to main content
Log in

V max estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the validity of maximal velocity (V max) estimated from three-parameter systems models, and to compare the predictive value of two- and three-parameter models for the 800 m. Seventeen trained male subjects \( ({\text{\ifmmode\expandafter\dot\else\expandafter\.\fi{V}O}}_{2} \max = 66.54 \pm 7.29\,{\text{ml}}\,{\text{min}} ^{{ - 1}} \,{\text{kg}}^{{ - 1}} ) \) performed five randomly ordered constant velocity tests (CVT), a maximal velocity test (mean velocity over the last 10 m portion of a 40 m sprint) and a 800 m time trial (V 800 m). Five systems models (two three-parameter and three two-parameter) were used to compute V max (three-parameter models), critical velocity (CV), anaerobic running capacity (ARC) and V 800 m from times to exhaustion during CVT. V max estimates were significantly lower than (0.19<Bias<0.24 m s−1) and poorly associated (0.44<r<0.49) with actual V max (8.43±0.33 m s−1). Critical velocity (CV) alone explained 40–62% of the variance in V 800 m. Combining CV with other parameters of each model to produce a calculated V 800 m resulted in a clear improvement of this relationship (0.83<r<0.94). Three-parameter models had a better association (0.93<r<0.94) and a lower bias (0.00<Bias<0.04 m s−1) with actual V 800 m (5.87±0.49 m s−1) than two-parameter models (0.83<r<0.91, 0.06<Bias<0.20). If three-parameter models appear to have a better predictive value for short duration events such as the 800 m, the fact the V max is not associated with the ability it is supposed to reflect suggests that they are more empirical than systems models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arsac LM, Locatelli E (2002) Modeling the energetics of 100-m running by using speed curves of world champions. J Appl Physiol 92:1781–1788

    PubMed  Google Scholar 

  • Billat LV, Koralsztein JP, Morton RH (1999) Time in human endurance models. From empirical models to physiological models. Sports Med 27:359–379

    Article  PubMed  CAS  Google Scholar 

  • Bishop D, Jenkins DG, Howard A (1998) The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med 19:125–129

    Article  PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    PubMed  CAS  Google Scholar 

  • Bosquet L, Leger L, Legros P (2002) Methods to determine aerobic endurance. Sports Med 32:675–700

    Article  PubMed  Google Scholar 

  • Bull AJ, Housh TJ, Johnson GO, Perry SR (2000) Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc 32:526–530

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, pp 1–567

    Google Scholar 

  • di Prampero PE (1999) The concept of critical velocity: a brief analysis. Eur J Appl Physiol Occup Physiol 80:162–164

    Article  PubMed  CAS  Google Scholar 

  • Ettema JH (1966) Limits of human performance and energy production. Int Z für Angew Physiol Einschl Arbeitphysiol 22:45–54

    Google Scholar 

  • Florence S, Weir JP (1997) Relationship of critical velocity to marathon running performance. Eur J Appl Physiol Occup Physiol 75:274–278

    Article  PubMed  CAS  Google Scholar 

  • Frishberg BA (1983) An analysis of overground and treadmill sprinting. Med Sci Sports Exerc 15:478–485

    PubMed  CAS  Google Scholar 

  • Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ (1995) Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc 27:1430–1438

    PubMed  CAS  Google Scholar 

  • Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31:725–741

    Article  PubMed  CAS  Google Scholar 

  • Green S, Dawson BT, Goodman C, Carey MF (1994) Y-intercept of the maximal work–duration relationship and anaerobic capacity in cyclists. Eur J Appl Physiol Occup Physiol 69:550–556

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1927) Muscular movement in man: the factors governing speed and recovery from fatigue. McGraw-Hill, New York, pp 41–44

    Google Scholar 

  • Hill DW (1993) The critical power concept. A review. Sports Med 16:237–254

    PubMed  CAS  Google Scholar 

  • Hill DW, Smith JC (1993) A comparison of methods of estimating anaerobic work capacity. Ergonomics 36:1495–1500

    Article  PubMed  CAS  Google Scholar 

  • Hill DW, Alain C, Kennedy MD (2003) Modeling the relationship between velocity and time to fatigue in rowing. Med Sci Sports Exerc 35:2098–2105

    Article  PubMed  Google Scholar 

  • Hopkins WG, Edmond IM, Hamilton BH, Macfarlane DJ, Ross BH (1989) Relation between power and endurance for treadmill running of short duration. Ergonomics 32:1565–1571

    Article  PubMed  CAS  Google Scholar 

  • Housh DJ, Housh TJ, Bauge SM (1990) A methodological consideration for the determination of critical power and anaerobic work capacity. Res Q Exerc Sport 61:406–409

    PubMed  CAS  Google Scholar 

  • Housh TJ, Cramer JT, Bull AJ, Johnson GO, Housh DJ (2001) The effect of mathematical modeling on critical velocity. Eur J Appl Physiol 84:469–475

    Article  PubMed  CAS  Google Scholar 

  • Hughson RL, Orok CJ, Staudt LE (1984) A high velocity treadmill running test to assess endurance running potential. Int J Sports Med 5:23–25

    PubMed  CAS  Google Scholar 

  • Jenkins DG, Quigley BM (1991) The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 34:13–22

    Article  PubMed  CAS  Google Scholar 

  • Kolbe T, Dennis SC, Selley E, Noakes TD, Lambert MI (1995) The relationship between critical power and running performance. J Sports Sci 13:265–269

    Article  PubMed  CAS  Google Scholar 

  • Kranenburg KJ, Smith DJ (1996) Comparison of critical speed determined from track running and treadmill tests in elite runners. Med Sci Sports Exerc 28:614–618

    Article  PubMed  CAS  Google Scholar 

  • Lacour JR, Bouvat E, Barthelemy JC (1990) Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur J Appl Physiol Occup Physiol 61:172–176

    Article  PubMed  CAS  Google Scholar 

  • Margaria R, Aghemo P, Pinera Limas F (1975) A simple relation between performance in running and maximal aerobic power. J Appl Physiol 38:351–352

    PubMed  CAS  Google Scholar 

  • Medbo JI, Burgers S (1990) Effect of training on the anaerobic capacity. Med Sci Sports Exerc 22:501–507

    PubMed  CAS  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 329–338

  • Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350

    Article  PubMed  CAS  Google Scholar 

  • Morton RH (1996) A 3-parameter critical power model. Ergonomics 39:611–619

    Article  PubMed  CAS  Google Scholar 

  • Morton RH, Hodgson DJ (1996) The relationship between power output and endurance: a brief review. Eur J Appl Physiol Occup Physiol 73:491–502

    Article  PubMed  CAS  Google Scholar 

  • Nebelsick-Gullett LJ, Housh TJ, Johnson GO, Bauge SM (1988) A comparison between methods of measuring anaerobic work capacity. Ergonomics 31:1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Pepper ML, Housh TJ, Johnson GO (1992) The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 13:121–124

    Article  PubMed  CAS  Google Scholar 

  • Ross A, Leveritt M (2001) Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med 31:1063–1082

    Article  PubMed  CAS  Google Scholar 

  • Scott CB, Roby FB, Lohman TG, Bunt JC (1991) The maximally accumulated oxygen deficit as an indicator of anaerobic capacity. Med Sci Sports Exerc 23:618–624

    PubMed  CAS  Google Scholar 

  • Smith CG, Jones AM (2001) The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol 85:19–26

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle H, Peres G, Monod H (1987) Standard anaerobic exercise tests. Sports Med 4:268–289

    PubMed  CAS  Google Scholar 

  • Vandewalle H, Kapitaniak B, Grun S, Raveneau S, Monod H (1989) Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. Eur J Appl Physiol Occup Physiol 58:375–381

    Article  PubMed  CAS  Google Scholar 

  • Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H (1997) Work–exhaustion time relationships and the critical power concept. A critical review. J Sports Med Phys Fitness 37:89–102

    PubMed  CAS  Google Scholar 

  • Whipp BJ, Huntsman DJ, Storer T, Lamarra N, Wasserman K (1982) A constant which determines the duration of tolerance to high intensity work. Fed Proc 41:1591

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Direction Régionale et Départementale de la Jeunesse et des Sports Nord-Pas-de-Calais for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Bosquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosquet, L., Duchene, A., Lecot, F. et al. V max estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction. Eur J Appl Physiol 97, 34–42 (2006). https://doi.org/10.1007/s00421-006-0143-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0143-7

Keywords

Navigation