Skip to main content
Log in

Diurnal normobaric moderate hypoxia raises serum erythropoietin concentration but does not stimulate accelerated erythrocyte production

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study was performed to examine the effect of diurnal normobaric hypoxia on hematological parameters. Eleven healthy male volunteers were randomly selected to be in either the hypoxic group (n=6) or the control group (n=5). The hypoxic group was exposed to 8 h of normobaric hypoxia in hypoxic tent systems that elicited a target peripheral O2 saturation of 81±2% on three consecutive days. The control group spent three consecutive 8-h days in modified tent systems that delivered normoxic air into the tent. Venous blood samples were collected before the exposure (days –5, 0), after each day of the exposure (days 1, 2, 3), and for 3 weeks after the exposure (days 7, 10, 13, 17, 24). Serum erythropoietin concentration significantly increased from 9.1±3.3 U·L−1 to 30.7±8.6 U·L−1 in the hypoxic group. Although there were significant increases in hematocrit (4%), hemoglobin concentration (5%), red blood cell count (4%) on day 7 in the hypoxic group, these observations were likely due to dehydration or biological variation over time. There was no significant change in early erythropoietic markers (reticulocyte counts or serum ferritin concentration), which provided inconclusive evidence of accelerated erythroid differentiation and proliferation. The results suggest that the degree of hypoxia was sufficient to stimulate increased erythropoietin production and release. However, the duration of hypoxic exposure was insufficient to propagate the erythropoietic cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbrecht PH, Littell JK (1972) Plasma erythropoietin in men and mice during acclimatization to different altitudes. J Appl Physiol 32:54–58

    PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Boston TT, Parisotto R, et al (2000) Simulated moderate altitude elevates serum erythropoietin but does not increase reticulocyte production in well-trained runners. Eur J Appl Physiol 81:428–435

    Article  PubMed  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Dobson GP, Hahn AG (1999a) “Live high, train low” does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3000 m for 23 nights. Eur J Appl Physiol 80:479–484

    Article  CAS  Google Scholar 

  • Ashenden MJ, Gore CJ, Martin DT, Dobson GP, Hahn AG (1999b) Effects of a 12-day “live high, train low” camp on reticulocyte production and haemoglobin mass in elite female road cyclists. Eur J Appl Physiol 80:472–478

    Article  CAS  Google Scholar 

  • Berglund B, Gennser M, Örnhagen H, Östberg C, Wide L (2002) Erythropoietin concentrations during 10 days of normobaric hypoxia under controlled environmental circumstances. Acta Physiol Scand 174:225–229

    Article  PubMed  CAS  Google Scholar 

  • Berglund B, Hemmingson P (1987) Effect of reinfusion of autologous blood on exercise performance in cross-country skiers. Int J Sports Med 8:231–233

    Article  PubMed  CAS  Google Scholar 

  • Brien AJ, Simon TL (1987) The effects of red blood cell infusion on 10-km race time. JAMA 257:2761–2765

    Article  PubMed  CAS  Google Scholar 

  • Brugniaux JV, Schmitt L, Robach P, Gérard N, Fouillot J-P, et al (2005) Eighteen days of “Living High-Training Low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol (in press)

  • Dehnert C, Hütler M, Liu Y, Menold E, Netzer C, et al (2002) Erythropoiesis and performance after two weeks of living high and training low in well trained triathletes. Int J Sports Med 23:561–566

    Article  PubMed  CAS  Google Scholar 

  • Dessypris EN, Sawyer ST (2004) Erythropoiesis. In: Wintrobe’s clinical hematology. Lippincott Williams and Wilkens, Philadelphia, pp 195–216

  • Eckardt K-U, Boutellier U, Kurtz A, Schopen M, Koller EA, et al (1989) Rate of erythropoietin formation in humans in response to acute hypobaric hypoxia. J Appl Physiol 66:1785–1788

    PubMed  CAS  Google Scholar 

  • Erslev AJ (1953) Humoral regulation of red cell production. Blood 8:349–357

    PubMed  CAS  Google Scholar 

  • Ge R-L, Witkowski S, Zhang Y, Alfrey C, Sivieri M, et al. (2002) Determinants of erythropoietin release in response to short-term hypobaric hypoxia. J Appl Physiol 92:2361–2367

    PubMed  CAS  Google Scholar 

  • Girden ER (1992) Two-factor study with repeated measures on one factor. In: ANOVA: repeated measures. Sage, Newbury Park, pp 41–59

  • Goodnough LT, Skikne B, Brugnara C (2000) Erythropoietin, iron, and erythropoiesis. Blood 96:823–833

    PubMed  CAS  Google Scholar 

  • Heinicke K, Heinicke I, Schmidt W, Wolfarth B (2005) A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med 26:350–355

    Article  PubMed  CAS  Google Scholar 

  • Heinicke K, Prommer N, Cajigal J, Viola T, Behn C, et al (2003) Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man. Eur J Appl Physiol 88:535–543

    Article  PubMed  CAS  Google Scholar 

  • Jackson CGR, Sharkey BJ (1988) Altitude, training, and human performance. Sports Med 6:279–284

    Article  PubMed  CAS  Google Scholar 

  • Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, et al. (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807

    Article  PubMed  CAS  Google Scholar 

  • Kanstrup I-L, Ekblom B (1984) Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med Sci Sports Exer 16:256–262

    CAS  Google Scholar 

  • Klausen T, Mohr T, Ghisler U, Nielsen OJ (1991) Maximal oxygen uptake and erythropoietic responses after training at moderate altitude. Eur J Appl Physiol 62:376–379

    Article  CAS  Google Scholar 

  • Knaupp W, Khilnani S, Sherwood J, Scharf S, Steinberg H (1992) Erythropoietin response to acute normobaric hypoxia in humans. J Appl Physiol 73:837–840

    PubMed  CAS  Google Scholar 

  • Koistinen PO, Rusko H, Irjala K, Rajamäki A, Penttinen K, et al (2000) EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med Sci Sports Exer 32:800–804

    Article  CAS  Google Scholar 

  • Koury ST, Bondurant MC, Koury MJ (1988) Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71:524–527

    PubMed  CAS  Google Scholar 

  • Lacombe C, Da Silva J-L, Bruneval P, Fournier J-G, Wendling F, et al (1988) Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest 81:620–623

    Article  PubMed  CAS  Google Scholar 

  • Levine BD, Stray-Gundersen J (1992) A practical approach to altitude training: Where to live and train for optimal performance enhancement. Int J Sports Med 13:S209–S212

    PubMed  Google Scholar 

  • Levine BD, Stray-Gundersen J (1997) “Living high-training low”: Effect of moderate altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    PubMed  CAS  Google Scholar 

  • Lundby C, Nielsen TK, Dela F, Damsgaard R (2005) The influence of intermittent altitude exposure to 4100 m on exercise capacity and blood variables. Scand J Med Sci Sports 15:182–187

    Article  PubMed  CAS  Google Scholar 

  • Mairbäurl H (1994) Red blood cell function in hypoxia at altitude and exercise. Int J Sports Med 15:51–63

    PubMed  Google Scholar 

  • Milledge JS, Cotes PM (1985) Serum erythropoietin in humans at high altitude and its relation to plasma renin. J Appl Physiol 59:360–364

    PubMed  CAS  Google Scholar 

  • Miyagawa S, Kobayashi M, Konishi N, Sato T, Ueda K (2000) Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol 109:555–562

    Article  PubMed  CAS  Google Scholar 

  • Richalet J-P, Souberbielle J-C, Antezana A-M, Dechaux M, Le Trong J-L, et al (1994) Control of erythropoiesis in humans during prolonged exposure to the altitude of 6,542 m. Am J Physiol 266:R756–R764

    PubMed  CAS  Google Scholar 

  • Rodríguez FA, Ventura JL, Casas M, Casas H, Pagés T, et al (2000) Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 82:170–177

    Article  PubMed  Google Scholar 

  • Savourey G, Garcia N, Besnard Y, Guinet A, Hanniquet A-M, et al (1996) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: cardio-ventilatory and haematological changes. Eur J Appl Physiol 73:529–535

    Article  CAS  Google Scholar 

  • Savourey G, Garcia N, Caravel JP, Gharib C, Pouzeratte N, et al (1998) Pre-adaptation, adaptation and de-adaptation to high altitude in humans: hormonal and biochemical changes at sea level. Eur J Appl Physiol 77:37–43

    Article  CAS  Google Scholar 

  • Stray-Gundersen J, Chapman RF, Levine BD (2001) “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol 91:1113–1120

    PubMed  CAS  Google Scholar 

  • Thomson JM, Stone JA, Ginsburg AD, Hamilton P (1982) O2 transport during exercise following blood reinfusion. J Appl Physiol 53:1213–1219

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the subjects who volunteered for this study; Mandy Chan for her technical expertise; Angela Ludwig, Julie Reeme, and Erica Enevold for helping with subject supervision during the HTS stays; Tatjana Sukovic at Sunnybrook Hospital and Women’s Health Science Centre for processing the s-[EPO] samples; and the Natural Sciences and Engineering Research Council and the Sport Science Association of Alberta for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer R. McLean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, S.R., Kolb, J.C., Norris, S.R. et al. Diurnal normobaric moderate hypoxia raises serum erythropoietin concentration but does not stimulate accelerated erythrocyte production. Eur J Appl Physiol 96, 651–658 (2006). https://doi.org/10.1007/s00421-005-0125-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0125-1

Keywords

Navigation