Skip to main content
Log in

Hypoxic ventilatory response is correlated with increased submaximal exercise ventilation after live high, train low

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study tested the hypothesis that live high, train low (LHTL) would increase submaximal exercise ventilation (E) in normoxia, and the increase would be related to enhanced hypoxic ventilatory response (HVR). Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxia (LHTLc, n=12), 20 nights of intermittent hypoxia (4×5-night ‘blocks’ of hypoxia interspersed by two nights of normoxia, LHTLi, n=10), or control (CON, n=11). LHTLc and LHTLi slept 8–10 h per night in normobaric hypoxia (2,650 m), and CON slept under ambient conditions (600 m). Resting, isocapnic HVR (ΔE/Δblood oxygen saturation) was measured in normoxia before (PRE) and after 15 nights (N15) hypoxia. Submaximal cycle ergometry was conducted PRE and after 4, 10, and 19 nights of hypoxia (N4, N10, and N19 respectively). Mean submaximal exerciseE was increased (P<0.05) from PRE to N4 in LHTLc [74.4 (5.1) vs 80.0 (8.4) l min−1; mean (SD)] and in LHTLi [69.0 (7.5) vs 76.9 (7.3) l min−1] and remained elevated in both groups thereafter, with no changes observed in CON at any time. Prior to LHTL, submaximalE was not correlated with HVR, but this relationship was significant at N4 (r=0.49, P=0.03) and N19 (r=0.77, P<0.0001). Additionally, the increases in submaximal E and HVR from PRE to N15–N19 were correlated (r=0.51, P=0.02) for the pooled data of LHTLc and LHTLi. These results suggest that enhanced hypoxic chemosensitivity contributes to increased exercise E in normoxia following LHTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4A, B
Fig. 5A, B

Similar content being viewed by others

References

  • Ashenden MJ, Gore CJ, Dobson GP, Hahn AG (1999) ‘Live high, train low’ does not change the total haemoglobin mass of male endurance athletes sleeping at a simulated altitude of 3,000 m for 23 nights. Eur J Appl Physiol 80:479–484

    Article  CAS  Google Scholar 

  • Bisgard GE, Forster HV (1996) Ventilatory responses to acute and chronic hypoxia. In: Fregly MJ and Blatteis CM (eds) Handbook of physiology, section 4, Environmental physiology. Oxford University Press, New York, pp 1207–1239

  • Buskirk ER, Kollias J, Akers RF, Prokop EK, Reategui EP (1967) Maximal performance at altitude and on return from altitude in conditioned runners. J Appl Physiol 23:259–266

    CAS  PubMed  Google Scholar 

  • Clark SA, Aughey RJ, Gore CJ, Hahn AG, Townsend NE, Kinsman TA, Chow CM, McKenna MJ, Hawley JA (2004) Effects of live-high, train-low hypoxic exposure on lactate metabolism in trained humans. J Appl Physiol 96:517–525

    Article  PubMed  Google Scholar 

  • Daniels J, Oldridge N (1970) The effects of alternate exposure to altitude and sea level on world-class middle-distance runners. Med Sci Sports 2:107–112

    CAS  PubMed  Google Scholar 

  • Dempsey JA (1986) J. B. Wolffe memorial lecture. Is the lung built for exercise? Med Sci Sports Exerc 18:143–155

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Forster HV (1982) Mediation of ventilatory adaptations. Physiol Rev 62:262–346

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Wagner PD (1999) Exercise-induced arterial hypoxemia. J Appl Physiol 87:1997–2006

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Forster HV, Birnbaum ML, Reddan WG, Thoden J, Grover RF, Rankin J (1972) Control of exercise hyperpnea under varying durations of exposure to moderate hypoxia. Respir Physiol 16:213–231

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JA, Forster HV, Bisgard GE, Chosy LW, Hanson PG, Kiorpes AL, Pelligrino DA (1979) Role of cerebrospinal fluid [H+] in ventilatory deacclimatization from chronic hypoxia. J Clin Invest 64:199–205

    CAS  PubMed  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol (Lond) 355:161–175

    Google Scholar 

  • Dill DB, Adams WC (1971) Maximal oxygen uptake at sea level and at 3,090 m altitude in high school champion runners. J Appl Physiol 30:854–859

    CAS  PubMed  Google Scholar 

  • Durand F, Mucci P, Prefaut C (2000) Evidence for an inadequate hyperventilation inducing arterial hypoxemia at submaximal exercise in all highly trained endurance athletes. Med Sci Sports Exerc 32:926–932

    Article  CAS  PubMed  Google Scholar 

  • Engwall MJ, Bisgard GE (1990) Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats. J Appl Physiol 69:1236–1243

    CAS  PubMed  Google Scholar 

  • Fatemian M, Robbins PA (1998) Human ventilatory response to CO2 after 8 h of isocapnic or poikilocapnic hypoxia. J Appl Physiol 85:1922–1928

    CAS  PubMed  Google Scholar 

  • Faulkner JA, Daniels JT, Balke B (1967) Effects of training at moderate altitude on physical performance capacity. J Appl Physiol 23:85–89

    CAS  PubMed  Google Scholar 

  • Forster HV, Klausen K (1973) The effect of chronic metabolic acidosis and alkalosis on ventilation during exercise and hypoxia. Respir Physiol 17:336–346

    Article  CAS  PubMed  Google Scholar 

  • Garcia N, Hopkins SR, Elliott AR, Aaron EA, Weinger MB, Powell FL (2001) Ventilatory response to 2-h sustained hypoxia in humans. Respir Physiol 124:11–22

    Article  CAS  PubMed  Google Scholar 

  • Garcia N, Hopkins SR, Powell FL (2000) Effects of intermittent hypoxia on the isocapnic hypoxic ventilatory response and erythropoiesis in humans. Respir Physiol 123:39–49

    Article  CAS  PubMed  Google Scholar 

  • Gavin TP, Derchak PA, Stager JM (1998) Ventilation’s role in the decline inO2max and SaO2 in acute hypoxic exercise. Med Sci Sports Exerc 30:195–199

    CAS  PubMed  Google Scholar 

  • Gore CJ, Crockett AJ, Pederson DG, Booth ML, Bauman A, Owen N (1995) Spirometric standards for healthy adult lifetime nonsmokers in Australia. Eur Respir J 8:773–782

    CAS  PubMed  Google Scholar 

  • Gore CJ, Hahn AG, Aughey RJ, Martin DT, Ashenden MJ, Clark SA, Garnham AP, Roberts AD, Slater GJ, McKenna MJ (2001) Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand 173:275–286

    Article  CAS  PubMed  Google Scholar 

  • Hahn AG, Gore CJ, Martin DT, Ashenden MJ, Roberts AD, Logan PA (2001) An evaluation of the concept of living at moderate altitude and training at sea level. Comp Biochem Physiol A Mol Integr Physiol 128:777–789

    Article  CAS  PubMed  Google Scholar 

  • Harms CA, Stager JM (1995) Low chemoresponsiveness and inadequate hyperventilation contribute to exercise-induced hypoxemia. J Appl Physiol 79:575–580

    CAS  PubMed  Google Scholar 

  • Hopkins SR, McKenzie DC (1989) Hypoxic ventilatory response and arterial desaturation during heavy work. J Appl Physiol 67:1119–1124

    CAS  PubMed  Google Scholar 

  • Johnson BD, Saupe KW, Dempsey JA (1992) Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol 73:874–886

    CAS  PubMed  Google Scholar 

  • Katayama K, Sato Y, Shima N, Qiu JC, Ishida K, Mori S, Miyamura M (2002) Enhanced chemosensitivity after intermittent hypoxic exposure does not affect exercise ventilation at sea level. Eur J Appl Physiol 87:187–191

    Article  CAS  PubMed  Google Scholar 

  • Levine BD, Friedman DB, Engfred K, Hanel B, Kjaer M, Clifford PS, Secher NH (1992) The effect of normoxic or hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc 24:769–775

    CAS  PubMed  Google Scholar 

  • Mahamed S, Duffin J (2001) Repeated hypoxic exposures change respiratory chemoreflex control in humans. J Physiol (Lond) 534:595–603

    Google Scholar 

  • Mahamed S, Cunningham DA, Duffin J (2003) Changes in respiratory control after three hours of isocapnic hypoxia in humans. J Physiol 547:271–281

    CAS  PubMed  Google Scholar 

  • Martin BJ, Weil JV, Sparks KE, McCullough RE, Grover RF (1978) Exercise ventilation correlates positively with ventilatory chemoresponsiveness. J Appl Physiol 45:557–564

    CAS  PubMed  Google Scholar 

  • McMahon ME, Boutellier U, Smith RM, Spengler CM (2002) Hyperpnea training attenuates peripheral chemosensitivity and improves cycling endurance. J Exp Biol 205:3937–3943

    PubMed  Google Scholar 

  • Rice AJ, Scroop GC, Gore CJ, Thornton AT, Chapman MA, Greville HW, Holmes MD, Scicchitano R (1999) Exercise-induced hypoxaemia in highly trained cyclists at 40% peak oxygen uptake. Eur J Appl Physiol 79:353–359

    Article  CAS  Google Scholar 

  • Sato M, Severinghaus JW, Powell FL, Xu FD, Spellman MJ (1992) Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol 73:101–107

    CAS  PubMed  Google Scholar 

  • Sato M, Severinghaus JW, Bickler P (1994) Time course of augmentation and depression of hypoxic ventilatory responses at altitude. J Appl Physiol 77:313–316

    CAS  PubMed  Google Scholar 

  • Tansley JG, Fatemian M, Howard LS, Poulin MJ, Robbins PA (1998) Changes in respiratory control during and after 48 h of isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol 85:2125–2134

    CAS  PubMed  Google Scholar 

  • Townsend NE, Gore CJ, Hahn AG, McKenna MJ, Aughey RJ, Clark SA, Kinsman T, Hawley JA, Chow CM (2002) Living high-training low increases hypoxic ventilatory response of well-trained endurance athletes. J Appl Physiol 93:1498–1505

    PubMed  Google Scholar 

  • Weil JV, Byrne-Quinn E, Sodal IE, Friesen WO, Underhill B, Filley GF, Grover RF (1970) Hypoxic ventilatory drive in normal man. J Clin Invest 49:1061–1072

    CAS  PubMed  Google Scholar 

  • Weil JV, Byrne-Quinn E, Sodal IE, Kline JS, McCullough RE, Filley GF (1972) Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol 33:813–819

    CAS  PubMed  Google Scholar 

  • Wetter TJ, Harms CA, Nelson WB, Pegelow DF, Dempsey JA (1999) Influence of respiratory muscle work onO2 and leg blood flow during submaximal exercise. J Appl Physiol 87:643–651

    CAS  PubMed  Google Scholar 

  • Whipp BJ (1994) Peripheral chemoreceptor control of exercise hyperpnea in humans. Med Sci Sports Exerc 26:337–347

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of BOC Gases Australia for supply of resources, equipment, and technical assistance, Mr. Colin Mackintosh for software development and support, and Mr. Rob Shugg and Mr. Evan Lawton for technical assistance. This study was funded by an Australian Research Council grant (no. C00002552).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan E. Townsend.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsend, N.E., Gore, C.J., Hahn, A.G. et al. Hypoxic ventilatory response is correlated with increased submaximal exercise ventilation after live high, train low. Eur J Appl Physiol 94, 207–215 (2005). https://doi.org/10.1007/s00421-004-1252-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1252-9

Keywords

Navigation