Skip to main content

Advertisement

Log in

Effects of voluntary wheel running and amino acid supplementation on skeletal muscle of mice

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aims of the present study were as follows: (1) to examine the adaptational changes to chronic endurance voluntary exercise and (2) to investigate the effects of amino acid supplementation on the adaptational changes induced by endurance training in hindlimb (gastrocnemius, tibialis, soleus) and respiratory (diaphragm) muscles of mice. Male C57Bl6 mice were divided in four groups: control sedentary, sedentary supplemented with amino acid mixture (BigOne, 1.5 mg g day−1 in drinking water for 8 weeks), running (free access to running wheels for 8 weeks), and running supplemented with amino acid mixture. Myosin heavy chain (MHC) isoform distribution was determined in all muscles considered. Fiber cross-sectional area (CSA) was measured in the soleus muscle. In all muscles except the tibialis, endurance training was associated with an overall shift towards the expression of slower MHC isoforms. Amino acid supplementation produced a shift towards the expression of faster MHC isoforms in the soleus and diaphragm muscles, and partially antagonized the effects of training. Immunohistochemical analysis of CSA of individual muscle fibers from the soleus muscle suggests that voluntary running produced a decrease in the size of type 1 fibers, and amino acid supplementation during training resulted in an increase in size in both type 1 and type 2A fibers. Collectively, these results suggest that the endurance adaptations induced by voluntary running depend on the muscle type, and that amino acid supplementation is able to modulate both fiber size and MHC isoform composition of skeletal muscles in sedentary and exercised mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA (2001) Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol 90:1900–1908

    CAS  PubMed  Google Scholar 

  • Antonio J, Sanders MS, Ehler LA, Uelmen J, Raether JB, Stout JR (2000) Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition 16:1043–1046

    CAS  PubMed  Google Scholar 

  • Avraham Y, Bonne O, Berry EM (1996) Behavioral and neurochemical alterations caused by diet restriction—the effect of tyrosine administration in mice. Brain Res 732:133–144

    CAS  PubMed  Google Scholar 

  • Avraham Y, Hao S, Mendelson S, Berry EM (2001) Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Med Sci Sports Exerc 33:2104–2110

    CAS  PubMed  Google Scholar 

  • Baldwin KM, Haddad F (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90:345–357

    CAS  PubMed  Google Scholar 

  • Baldwin KM, Cooke DA, Cheadle WG (1977) Time course adaptations in cardiac and skeletal muscle to different running programs. J Appl Physiol 42:267–272

    CAS  PubMed  Google Scholar 

  • Bennet WM, Connacher AA, Scrimgeour CM, Smith K, Rennie MJ (1989) Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1–13C]leucine. Clin Sci (Lond) 76:447–454

    Google Scholar 

  • Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268:E514–E520

    CAS  PubMed  Google Scholar 

  • Biolo G, Tipton KD, Klein, S Wolfe RR (1997) An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol 273:E122–E129

    CAS  PubMed  Google Scholar 

  • Blomstrand E, Saltin B (2001) BCAA intake affects protein metabolism in muscle after but not during exercise in humans. Am J Physiol 281: E365–E374

    CAS  Google Scholar 

  • Blomstrand E, Perrett D, Parry-Billings M, Newsholme EA (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol Scand 136:473–481

    CAS  PubMed  Google Scholar 

  • Blomstrand E, Hassmen P, Ekblom B, Newsholme EA (1991) Administration of branched-chain amino acids during sustained exercise—effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol 63:83–88

    CAS  PubMed  Google Scholar 

  • Blomstrand E, Andersson S, Hassmen P, Ekblom B, Newsholme EA (1995) Effect of branched-chain amino acid and carbohydrate supplementation on the exercise-induced change in plasma and muscle concentration of amino acids in human subjects. Acta Physiol Scand 153:87–96

    CAS  PubMed  Google Scholar 

  • Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71:541–585

    CAS  PubMed  Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73:195–262

    Article  CAS  PubMed  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C (1991) Force–velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J Physiol (Lond) 437:655–672

    Google Scholar 

  • Calders P, Matthys D, Derave W, Pannier JL (1999) Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats. Med Sci Sports Exerc 31:583–587

    Google Scholar 

  • Carli G, Bonifazi M, Lodi L, Lupo C, Martelli G, Viti A (1992) Changes in the exercise-induced hormone response to branched chain amino acid administration. Eur J Appl Physiol 64:272–277

    CAS  Google Scholar 

  • Castellino P, Luzi L, Simonson DC, Haymond M, DeFronzo RA (1987) Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest 80:1784–1793

    CAS  PubMed  Google Scholar 

  • D’Antona G, Pellegrino MA, Polla B, Ricci S, Conti F, Bottinelli R (2001) Effects of voluntary wheel running on skeletal muscle of mice with standard diet or with amino acid supplementation. J Muscle Res Cell Motil 22:567

    Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    CAS  PubMed  Google Scholar 

  • Deijen JB, Orlebeke JF (1994) Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull 33:319–323

    Article  CAS  PubMed  Google Scholar 

  • Deijen JB, Wientjes CJ, Vullinghs HF, Cloin PA, Langefeld JJ (1999) Tyrosine improves cognitive performance and reduces blood pressure in cadets after one week of a combat training course. Brain Res Bull 48:203–209

    Article  CAS  PubMed  Google Scholar 

  • Demirel HA, Powers SK, Naito H, Hughes M, Coombes JS (1999) Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose–response relationship. J Appl Physiol 86:1002–1008

    CAS  PubMed  Google Scholar 

  • Dohm MR, Richardson CS, Garland TJr (1994) Exercise physiology of wild and random-bred laboratory house mice and their reciprocal hybrids. Am J Physiol 267:R1098–R1108

    CAS  PubMed  Google Scholar 

  • Dudley GA, Abraham WM, Terjung RL (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53:844–850

    CAS  PubMed  Google Scholar 

  • Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M (2001) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol (Lond) 535:301–311

    Google Scholar 

  • Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473

    CAS  PubMed  Google Scholar 

  • Fitts RH, Costill DL, Gardetto PR (1989) Effect of swim exercise training on human muscle fiber function. J Appl Physiol 66:465–475

    CAS  PubMed  Google Scholar 

  • Fitts RH, McDonald KS, Schluter JM (1991) The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. J Biomech 24:111–122

    Article  PubMed  Google Scholar 

  • Fitzsimons DP, Diffee GM, Herrick RE, Baldwin KM (1990) Effects of endurance exercise on isomyosin patterns in fast- and slow-twitch skeletal muscles. J Appl Physiol 68:1950–1955

    CAS  PubMed  Google Scholar 

  • Garland, TJr, Gleeson TT, Aronovitz BA, Richardson, CS Dohm MR (1995) Maximal sprint speeds and muscle fiber composition of wild and laboratory house mice. Physiol Behav 58:869–876

    Article  CAS  PubMed  Google Scholar 

  • Georgiades E, Behan WM, Kilduff LP, Hadjicharalambous M, Mackie EE, Wilson J, Ward SA, Pitsiladis YP (2003) Chronic fatigue syndrome: new evidence for a central fatigue disorder. Clin Sci (Lond) 105:213–218

    Article  Google Scholar 

  • Gibala MJ (2000) Nutritional supplementation and resistance exercise: what is the evidence for enhanced skeletal muscle hypertrophy? Can J Appl Physiol 25:524–535

    CAS  PubMed  Google Scholar 

  • Harrison BC, Bell ML, Allen DL, Byrnes WC, Leinwand LA (2002) Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice. J Appl Physiol 92:313–322

    CAS  PubMed  Google Scholar 

  • Hickson RC, Galassi TM, Dougherty KA (1983) Repeated development and regression of exercise-induced cardiac hypertrophy in rats. J Appl Physiol 54:794–797

    CAS  PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    CAS  PubMed  Google Scholar 

  • Houle-Leroy P, Garland TJr, Swallow JG, Guderley H (2000) Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus. J Appl Physiol 89:1608–1616

    CAS  PubMed  Google Scholar 

  • Hutton JC, Sener A, Malaisse WJ (1980) Interaction of branched chain amino acids and keto acids upon pancreatic islet metabolism and insulin secretion. J Biol Chem 255:7340–7346

    CAS  PubMed  Google Scholar 

  • Ishihara A, Inoue N, Katsuta S (1991) The relationship of voluntary running to fibre type composition, fibre area and capillary supply in rat soleus and plantaris muscles. Eur J Appl Physiol 62:211–215

    CAS  Google Scholar 

  • Kemi OJ, Loennechen JP, Wisloff U, Ellingsen O (2002) Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy. J Appl Physiol 93:1301–1309

    PubMed  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Kriketos AD, Pan DA, Sutton JR, Hoh JF, Baur LA, Cooney GJ, Jenkins AB, Storlien LH (1995) Relationships between muscle membrane lipids, fiber type, and enzyme activities in sedentary and exercised rats. Am J Physiol 269:R1154–R1162

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Levenhagen DK, Carr C, Carlson MG, Maron DJ, Borel MJ, Flakoll PJ (2002) Postexercise protein intake enhances whole-body and leg protein accretion in humans. Med Sci Sports Exerc 34:828–837

    Article  CAS  PubMed  Google Scholar 

  • Nair KS, Schwartz RG, Welle S (1992) Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am J Physiol 263:E928–E934

    CAS  PubMed  Google Scholar 

  • Pansarasa O, D’Antona G, Gualea MR, Marzani B, Pellegrino MA, Marzatico F (2002) “Oxidative stress”: effects of mild endurance training and testosterone treatment on rat gastrocnemius muscle. Eur J Appl Physiol 87:550–555

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino MA, Canepari M, Rossi R, D’Antona G, Reggiani C, Bottinelli R (2003) Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J Physiol (Lond) 546:677–689

    Google Scholar 

  • Pette D (1998) Training effects on the contractile apparatus. Acta Physiol Scand 162:367–376

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR (2000) An oral essential amino acid–carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol 88:386–392

    CAS  PubMed  Google Scholar 

  • Rodnick KJ, Reaven GM, Haskell WL, Sims CR, Mondon CE (1989) Variations in running activity and enzymatic adaptations in voluntary running rats. J Appl Physiol 66:1250–1257

    CAS  PubMed  Google Scholar 

  • Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    CAS  PubMed  Google Scholar 

  • Schluter JM, Fitts RH (1994) Shortening velocity and ATPase activity of rat skeletal muscle fibers: effects of endurance exercise training. Am J Physiol 266:C1699–C1673

    CAS  PubMed  Google Scholar 

  • Smith K, Reynolds N, Downie S, Patel A, Rennie MJ (1998) Effects of flooding amino acids on incorporation of labeled amino acids into human muscle protein. Am J Physiol 275:E73–E78

    CAS  PubMed  Google Scholar 

  • Sugiura T, Morimoto A, Sakata Y, Watanabe T, Murakami N (1990) Myosin heavy chain isoform changes in rat diaphragm are induced by endurance training. Jpn J Physiol 40:759–763

    CAS  PubMed  Google Scholar 

  • Sugiura T, Morimoto A, Murakami N (1992) Effects of endurance training on myosin heavy-chain isoforms and enzyme activity in the rat diaphragm. Pflugers Arch 421:77–81

    CAS  PubMed  Google Scholar 

  • Sullivan VK, Powers SK, Criswell DS, Tumer N, Larochelle JS, Lowenthal D (1995) Myosin heavy chain composition in young and old rat skeletal muscle: effects of endurance exercise. J Appl Physiol 78:2115–2120

    CAS  PubMed  Google Scholar 

  • Swallow JG, Garland T Jr, Carter PA, Zhan WZ, Sieck GC (1998) Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J Appl Physiol 84:69–76

    CAS  PubMed  Google Scholar 

  • Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75:2337–2340

    CAS  PubMed  Google Scholar 

  • Tibbits G, Koziol BJ, Roberts NK, Baldwin KM, Barnard RJ (1978) Adaptation of the rat myocardium to endurance training. J Appl Physiol 44:85–89

    CAS  PubMed  Google Scholar 

  • Tipton KD, Ferrando AA, Phillips SM, Doyle DJr, Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276:E628–E634

    CAS  PubMed  Google Scholar 

  • Van Hall G, Raaymakers JS, Saris WH, Wagenmakers AJ (1995) Ingestion of branched-chain amino acids and tryptophan during sustained exercise in man: failure to affect performance. J Physiol (Lond) 486:789–794

    Google Scholar 

  • Verger P, Aymard P, Cynobert L, Anton G, Luigi R (1994) Effects of administration of branched-chain amino acids vs. glucose during acute exercise in the rat. Physiol Behav 55:523–526

    Article  CAS  PubMed  Google Scholar 

  • Volpi E, Ferrando AA, Yeckel CW, Tipton KD, Wolfe RR (1998) Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J Clin Invest 101:2000–2007

    CAS  PubMed  Google Scholar 

  • Vukovich MD, Sharp RL, Kesl LD, Schaulis DL, King DS (1997) Effects of a low-dose amino acid supplement on adaptations to cycling training in untrained individuals. Int J Sport Nutr 7:298–309

    CAS  PubMed  Google Scholar 

  • Wernig A, Irintchev A, Weisshaupt P (1990) Muscle injury, cross-sectional area and fibre type distribution in mouse soleus after intermittent wheel-running. J Physiol (Lond) 428:639–652

    Google Scholar 

  • Widrick JJ, Trappe SW, Blaser CA, Costill DL, Fitts RH (1996) Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. Am J Physiol 271:C666–C675

    CAS  PubMed  Google Scholar 

  • Zhan WZ, Swallow JG, Garland T Jr, Proctor DN, Carter PA, Sieck GC (1999) Effects of genetic selection and voluntary activity on the medial gastrocnemius muscle in house mice. J Appl Physiol 87:2326–2333

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe D’Antona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrino, M.A., Brocca, L., Dioguardi, F.S. et al. Effects of voluntary wheel running and amino acid supplementation on skeletal muscle of mice. Eur J Appl Physiol 93, 655–664 (2005). https://doi.org/10.1007/s00421-004-1237-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-004-1237-8

Keywords

Navigation