Skip to main content

Advertisement

Log in

Effects of profession on urinary PAH metabolite levels in the US population

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

Although exposure to polycyclic aromatic hydrocarbons (PAHs) is common in both environmental and occupational settings, few studies have compared PAH exposure among people with different professions. The purpose of this study was to investigate the variations in recent PAH exposure among different occupational groups over time using national representative samples.

Method

The study population consisted of 4162 participants from the 2001 to 2008 National Health and Nutrition Examination Survey, who had both urinary PAH metabolites and occupational information. Four corresponding monohydroxy-PAH urine metabolites: naphthalene (NAP), fluorene (FLUO), phenanthrene (PHEN), and pyrene (PYR) among seven broad occupational groups were analyzed using weighted linear regression models, adjusting for creatinine levels, sociodemographic factors, smoking status, and sampling season.

Results

The overall geometric mean concentrations of NAP, FLUO, PHEN, and PYR were 6927, 477, 335, and 87 ng/L, respectively. All four PAH metabolites were elevated in the “extractive, construction, and repair (ECR)” group, with 21–42 % higher concentrations than those in the reference group of “management.” Similar trends were seen in the “operators, fabricators, and laborers (OFL)” group for FLUO, PHEN, and PYR. In addition, both “service” and “support” groups had elevated FLUO. Significant (p < 0.001) upward temporal trends were seen in NAP and PYR, with an approximately 6–17 % annual increase, and FLUO and PHEN remained relatively stable. Race and socioeconomic status show independent effects on PAH exposure.

Conclusions

Heterogeneous distributions of urinary PAH metabolites among people with different job categories exist at the population level. The upward temporal trends in NAP and PYR warrant reduction in PAH exposure, especially among those with OFL and ECR occupations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, Kannan K (2011) Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 22(12):2028–2035. doi:10.1016/j.foodcont.2011.05.024

    Article  CAS  Google Scholar 

  • ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, Georgia: US department of health and human services, agency for toxic substances and disease registry

  • Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L et al (2009) Special report: policy a review of human carcinogens-Part F: chemical agents and related occupations. Lancet Oncol 10(12):1143–1144

    Article  Google Scholar 

  • Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200

    Article  CAS  Google Scholar 

  • Bell ML, Ebisu K (2012) Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect 120(12):1699–1704. doi:10.1289/ehp.1205201

    CAS  Google Scholar 

  • Bernert JT Jr, Turner WE, Pirkle JL, Sosnoff CS, Akins JR, Waldrep MK, Ann Q et al (1997) Development and validation of sensitive method for determination of serum cotinine in smokers and nonsmokers by liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. Clin Chem 43(12):2281–2291

    CAS  Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8(3):444–472. doi:10.1023/a:1018465507029

    Article  CAS  Google Scholar 

  • Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–488

    Article  CAS  Google Scholar 

  • Campo L, Fustinoni S, Consonni D, Pavanello S, Kapka L, Siwinska E, Mielzynska D et al (2014) Urinary carcinogenic 4-6 ring polycyclic aromatic hydrocarbons in coke oven workers and in subjects belonging to the general population: role of occupational and environmental exposure. Int J Hyg Environ Health 217(2–3):231–238. doi:10.1016/j.ijheh.2013.06.005

    Article  CAS  Google Scholar 

  • Clark JD 3rd, Serdar B, Lee DJ, Arheart K, Wilkinson JD, Fleming LE (2012) Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environ Res 117:132–137. doi:10.1016/j.envres.2012.04.012

    Article  CAS  Google Scholar 

  • Dor F, Dab W, Empereur-Bissonnet P, Zmirou D (1999) Validity of biomarkers in environmental health studies: the case of PAHs and benzene. Crit Rev Toxicol 29(2):129–168. doi:10.1080/10408449991349195

    Article  CAS  Google Scholar 

  • Hajat A, Diez-Roux AV, Adar SD, Auchincloss AH, Lovasi GS, O’Neill MS, Sheppard L et al (2013) Air pollution and individual and neighborhood socioeconomic status: evidence from the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect 121(11–12):1325–1333. doi:10.1289/ehp.1206337

    Google Scholar 

  • Han IK, Duan X, Zhang L, Yang H, Rhoads GG, Wei F, Zhang J (2008) 1-Hydroxypyrene concentrations in first morning voids and 24-h composite urine: intra- and inter-individual comparisons. J Expo Sci Environ Epidemiol 18(5):477–485. doi:10.1038/sj.jes.7500639

    Article  CAS  Google Scholar 

  • Hansen AM, Raaschou-Nielsen O, Knudsen LE (2005) Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. Sci Total Environ 347(1–3):98–105. doi:10.1016/j.scitotenv.2004.12.037

    Article  CAS  Google Scholar 

  • Hansen AM, Mathiesen L, Pedersen M, Knudsen LE (2008) Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies–a review. Int J Hyg Environ Health 211(5–6):471–503. doi:10.1016/j.ijheh.2007.09.012

    Article  CAS  Google Scholar 

  • Ikeda M, Ezaki T, Tsukahara T, Moriguchi J, Furuki K, Fukui Y, Okamoto S et al (2003) Bias induced by the use of creatinine-corrected values in evaluation of beta(2)-microglobulin levels. Toxicol Lett 145(2):197–207. doi:10.1016/S0378-4274(03)00320-5

    Article  CAS  Google Scholar 

  • Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 778(1–2):31–47. doi:10.1016/S0378-4347(01)00467-4

    Article  CAS  Google Scholar 

  • Jia C, James W, Kedia S (2014) Relationship of racial composition and cancer risks from air toxics exposure in Memphis, Tennessee, USA. Int J Environ Res Public Health 11(8):7713–7724. doi:10.3390/ijerph110807713

    Article  CAS  Google Scholar 

  • Jung KH, Patel MM, Moors K, Kinney PL, Chillrud SN, Whyatt R, Hoepner L et al (2010) Effects of Heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an Urban Birth Cohort. Atmos Environ (1994) 44(36):4545–4552. doi:10.1016/j.atmosenv.2010.08.024

    Article  CAS  Google Scholar 

  • Jung KH, Hsu S-I, Yan B, Moors K, Chillrud SN, Ross J, Wang S et al (2012) Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ Int 45:44–50

    Article  CAS  Google Scholar 

  • Jung KH, Liu B, Lovinsky-Desir S, Yan B, Camann D, Sjodin A, Li Z et al (2014a) Time trends of polycyclic aromatic hydrocarbon exposure in New York City from 2001 to 2012: assessed by repeat air and urine samples. Environ Res 131:95–103. doi:10.1016/j.envres.2014.02.017

    Article  CAS  Google Scholar 

  • Jung KH, Perzanowski M, Rundle A, Moors K, Yan B, Chillrud SN, Whyatt R et al (2014b) Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res 128:35–41. doi:10.1016/j.envres.2013.12.002

    Article  CAS  Google Scholar 

  • Kim JY, Hecht SS, Mukherjee S, Carmella SG, Rodrigues EG, Christiani DC (2005) A urinary metabolite of phenanthrene as a biomarker of polycyclic aromatic hydrocarbon metabolic activation in workers exposed to residual oil fly ash. Cancer Epidemiol Biomarkers Prev 14(3):687–692. doi:10.1158/1055-9965.Epi-04-0428

    Article  CAS  Google Scholar 

  • Kim K-H, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. doi:10.1016/j.envint.2013.07.019

    Article  CAS  Google Scholar 

  • Langlois PH, Hoyt AT, Lupo PJ, Lawson CC, Waters MA, Desrosiers TA, Shaw GM et al (2012) Maternal occupational exposure to polycyclic aromatic hydrocarbons and risk of neural tube defect-affected pregnancies. Birth Defects Res Part A-Clin Mol Teratol 94(9):693–700. doi:10.1002/bdra.23045

    Article  CAS  Google Scholar 

  • Levine H, Berman T, Goldsmith R, Goen T, Spungen J, Novack L, Amitai Y et al (2015) Urinary concentrations of polycyclic aromatic hydrocarbons in Israeli adults: demographic and life-style predictors. Int J Hyg Environ Health 218(1):123–131. doi:10.1016/j.ijheh.2014.09.004

    Article  CAS  Google Scholar 

  • Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG (2008) Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 107(3):320–331. doi:10.1016/j.envres.2008.01.013

    Article  CAS  Google Scholar 

  • Li Z, Romanoff L, Bartell S, Pittman EN, Trinidad DA, McClean M, Webster TF et al (2012) Excretion profiles and half-lives of ten urinary polycyclic aromatic hydrocarbon metabolites after dietary exposure. Chem Res Toxicol 25(7):1452–1461. doi:10.1021/tx300108e

    Article  CAS  Google Scholar 

  • Lu H, Zhu L (2007) Pollution patterns of polycyclic aromatic hydrocarbons in tobacco smoke. J Hazard Mater 139(2):193–198. doi:10.1016/j.jhazmat.2006.06.011

    Article  CAS  Google Scholar 

  • McClean MD, Rinehart RD, Ngo L, Eisen EA, Kelsey KT, Wiencke JK, Herrick RF (2004) Urinary 1-hydroxypyrene and polycyclic aromatic hydrocarbon exposure among asphalt paving workers. Ann Occup Hyg 48(6):565–578. doi:10.1093/annhyg/meh044

    Article  CAS  Google Scholar 

  • Miller RL, Garfinkel R, Horton M, Camann D, Perera FP, Whyatt RM, Kinney PL (2004) Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 126(4):1071–1078. doi:10.1378/chest.126.4.1071

    Article  CAS  Google Scholar 

  • Morello-Frosch R, Jesdale BM (2006) Separate and unequal: residential segregation and estimated cancer risks associated with ambient air toxics in US metropolitan areas. Environ Health Perspect 114(3):386–393. doi:10.1289/ehp.8500

    Article  CAS  Google Scholar 

  • Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA et al (2002) Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36(12):2552–2559. doi:10.1021/Es015727h

    Article  CAS  Google Scholar 

  • NCHS (2006) Analytic and Reporting Guidelines. The National Health and Nutrition Examination Survey (NHANES). National Center for Health Statistics. http://www.cdcgov/nchs/data/nhanes/nhanes_03_04/nhanes_analytic_guidelines_dec_2005pdf Assessed 20 Mar 2014

  • NCHS (2013) National Center for Health Statistics, Specifying Weighting Parameters. http://www.cdcgov/nchs/tutorials/nhanes/SurveyDesign/Weighting/introhtm Assessed 20 Mar 2014

  • Nethery E, Wheeler AJ, Fisher M, Sjodin A, Li Z, Romanoff LC, Foster W et al (2012) Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women. J Expo Sci Env Epid 22(1):70–81. doi:10.1038/Jes.2011.32

    Article  CAS  Google Scholar 

  • O’Neill MS, Jerrett M, Kawachi L, Levy JL, Cohen AJ, Gouveia N, Wilkinson P et al (2003) Health, wealth, and air pollution: advancing theory and methods. Environ Health Perspect 111(16):1861–1870. doi:10.1289/ehp.6334

    Article  Google Scholar 

  • Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, Hoepner L et al (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 114(8):1287–1292

    Article  CAS  Google Scholar 

  • Perera FP, Wang S, Vishnevetsky J, Zhang B, Cole KJ, Tang D, Rauh V et al (2011) Polycyclic aromatic hydrocarbons-aromatic DNA adducts in cord blood and behavior scores in New York city children. Environ Health Perspect 119(8):1176–1181. doi:10.1289/ehp.1002705

    Article  CAS  Google Scholar 

  • Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, Camann D et al (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ Health Perspect 120(6):921–926. doi:10.1289/ehp.1104315

    Article  CAS  Google Scholar 

  • Romanoff LC, Li Z, Young KJ, Blakely NC, Patterson DG, Sandau CD (2006) Automated solid-phase extraction method for measuring urinary polycyclic aromatic hydrocarbon metabolites in human biomonitoring using isotope-dilution gas chromatography high-resolution mass spectrometry. J Chromatogr B 835(1–2):47–54. doi:10.1016/j.jchromb.2006.03.004

    Article  CAS  Google Scholar 

  • Rosa MJ, Jung KH, Perzanowski MS, Kelvin EA, Darling KW, Camann DE, Chillrud SN et al (2011) Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respir Med 105(6):869–876. doi:10.1016/j.rmed.2010.11.022

    Article  Google Scholar 

  • Rota M, Bosetti C, Boccia S, Boffetta P, La Vecchia C (2014) Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers: an updated systematic review and a meta-analysis to 2014. Arch Toxicol 88(8):1479–1490. doi:10.1007/s00204-014-1296-5

    Article  CAS  Google Scholar 

  • Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, Reyes M et al (2012) Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 175(11):1163–1172. doi:10.1093/aje/kwr455

    Article  Google Scholar 

  • Scherer G, Frank S, Riedel K, Meger-Kossien I, Renner T (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. Cancer Epidemiol Biomarkers Prev 9(4):373–380

    CAS  Google Scholar 

  • Scinicariello F, Buser MC (2014) Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001–2006). Environ Health Perspect 122(3):299–303. doi:10.1289/ehp.1307234

    Google Scholar 

  • Tuntawiroon J, Mahidol C, Navasumrit P, Autrup H, Ruchirawat M (2007) Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 28(4):816–822. doi:10.1093/carcin/bgl175

    Article  CAS  Google Scholar 

  • Unwin J, Cocker J, Scobbie E, Chambers H (2006) An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann Occup Hyg 50(4):395–403. doi:10.1093/annhyg/mel010

    Article  CAS  Google Scholar 

  • Us EPA (1999) Integrated Risk Information System (IRIS) on Polycyclic Organic Matter. US Environmental Protection Agency National Center for Environmental Assessment. Office of Research and Development, Washington, DC 1999

    Google Scholar 

  • Van Rooij JG, Van Lieshout EM, Bodelier-Bade MM, Jongeneelen FJ (1993) Effect of the reduction of skin contamination on the internal dose of creosote workers exposed to polycyclic aromatic hydrocarbons. Scand J Work Environ Health 19(3):200–207

    Article  Google Scholar 

  • Wei B, Bernert JT, Blount B, Sosnoff C, Wang L (2014) Occupational exposure to second-hand tobacco smoke in the United States: NHANES 1999–2008. 24th Annual Meeting of The International Society of Exposure Science October 12–16 Cincinnati, Ohio (Abstract # Mo-S-C4-05)

  • Xu XH, Cook RL, Ilacqua VA, Kan HD, Talbott EO, Kearney G (2010) Studying associations between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases in the United States. Sci Total Environ 408(21):4943–4948. doi:10.1016/j.scitotenv.2010.07.034

    Article  CAS  Google Scholar 

  • Zipf G, Chiappa M, Porter KS et al (2013) National health and nutrition examination survey: plan and operations, 1999–2010 National Center for Health Statistics Vital Health Stat 1(56):4–9

Download references

Acknowledgments

This work is partially supported by a JPB Environmental Health Fellowship award granted by the JPB Foundation and managed by the Harvard T.H. Chan School of Public Health. The authors thank the reviewers for their helpful comments and suggestions to improve this paper. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bian Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Jia, C. Effects of profession on urinary PAH metabolite levels in the US population. Int Arch Occup Environ Health 89, 123–135 (2016). https://doi.org/10.1007/s00420-015-1057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-015-1057-7

Keywords

Navigation