Skip to main content
Log in

Biological effect markers in exhaled breath condensate and biomonitoring in welders: impact of smoking and protection equipment

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to investigate the effect of welding as well as the impact of smoking and protection measures on biological effect markers in exhaled breath condensate. Additionally, biomonitoring of chromium, aluminium and nickel in urine was performed to quantify internal exposure.

Methods

Exhaled breath condensate (EBC) and urine samples of 45 male welders and 24 male non-exposed control subjects were collected on Friday pre-shift and after 8 h of work post-shift. In EBC, biological effect markers such as malondialdehyde, nitrite, nitrate, 3-nitrotyrosine, tyrosine, hydroxyproline, proline, H2O2 and pH-value were measured while aluminium, nickel, and chromium were measured in the urine samples.

Results

Although internal exposure to aluminium, nickel and chromium in this study was low, welders showed significantly increased concentrations of all these parameters at baseline compared to non-exposed controls. Moreover, welders had higher nitrate concentrations in EBC at baseline and after shift. Nitrate concentration was considerably lower after shift if personal protection equipment was used. H2O2 was increased only when subjects smoked during shift.

Conclusion

It has been shown that welding-associated long-term and short-term health effects could be detected in a population of welders. The results also showed that using personal protection equipment is of high importance and H2O2 may be an effect marker associated with smoking rather than with welding fumes, while nitrate in EBC seems to be sensitive to welding fume exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • André E, Stoeger T, Takenaka S, Bahnweg M, Ritter B, Karg E, Lentner B, Reinhard C, Schulz H, Wjst M (2006) Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. Eur Respir J 28:275–285

    Article  Google Scholar 

  • Andreoli R, Manini P, Corradi M, Mutti A, Niessen WM (2003) Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17:637–645

    Article  CAS  Google Scholar 

  • Antonini JM, Clarke RW, Krishna Murthy GG, Sreekanthan P, Jenkins N, Eagar TW, Brain JD (1998) Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicol Lett 98:77–86

    Article  CAS  Google Scholar 

  • Araneda OF, Garcia C, Lagos N, Quiroga G, Cajigal J, Salazar MP, Behn C (2005) Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol 95:383–390

    Article  CAS  Google Scholar 

  • Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ (2001) Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 56:456–461

    Article  CAS  Google Scholar 

  • Barregard L, Sallsten G, Andersson L, Almstrand AC, Gustafson P, Andersson M, Olin AC (2008) Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. Occup Environ Med 65:319–324

    Article  CAS  Google Scholar 

  • Borm PJA (2004) Partikeltoxikologie: Vom Steinkohlenbergbau zur Nanotechnologie. Zbl Arbeitsmed 54:188–197

    CAS  Google Scholar 

  • Boyce PD, Kim JY, Weissman DN, Hunt J, Christiani DC (2006) pH increase observed in exhaled breath condensate from welding fume exposure. J Occup Environ Med 48:353–356

    Article  Google Scholar 

  • Broding HC, Michalke B, Goen T, Drexler H (2009) Comparison between exhaled breath condensate analysis as a marker for cobalt and tungsten exposure and biomonitoring in workers of a hard metal alloy processing plant. Int Arch Occup Environ Health 82:565–573

    Article  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area. Toxicol Appl Pharmacol 175:191–199

    Article  CAS  Google Scholar 

  • Caglieri A, Goldoni M, Acampa O, Andreoli R, Vettori M, Corradi M, Apostoli P, Mutti A (2006) The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers. Environ Health Perspect 114:542–546

    Article  CAS  Google Scholar 

  • Claeson K, Thorsen G, Karlberg B (2001) Methyl malondialdehyde as an internal standard for the determination of malondialdehyde. J Chromatogr B Biomed Sci Appl 751:315–323

    Article  CAS  Google Scholar 

  • Conventz A, Musiol A, Brodowsky C, Müller-Lux A, Dewes P, Kraus T, Schettgen T (2007) Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B 860:78–85

    Article  CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft (2008) Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe—Analysen in biologischem Material. Wiley-VCH, Weinheim

    Google Scholar 

  • Deutsche Forschungsgemeinschaft (2009) MAK- und BAT-Werte-Liste 2009. Wiley-VCH, Weinheim

    Google Scholar 

  • Dziedzic B, Mazanowska-Gajdowicz J, Walczewska A, Sarniak A, Nowak D (2003) Comparison of cadmium and enzyme-catalyzed nitrate reduction for determination of NO2−/NO3− in breath condensate. Clin Chim Acta 335:65–74

    Article  CAS  Google Scholar 

  • Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M, Gare M, Lin W, Sun F (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669

    Google Scholar 

  • Gessner C, Kuhn H, Seyfarth HJ, Pankau H, Winkler J, Schauer J, Wirtz H (2001) Factors influencing breath condensate volume. Pneumologie 55:414–419

    Article  CAS  Google Scholar 

  • Gube M, Brand P, Conventz A, Ebel J, Goeen T, Holzinger K, Muller-Lux A, Reisgen U, Schettgen T, Kraus T (2009) Spirometry, impulse oscillometry and capnovolumetry in welders and healthy male subjects. Respir Med 103:1350–1357

    Article  Google Scholar 

  • Han SG, Kim Y, Kashon ML, Pack DL, Castranova V, Vallyathan V (2005) Correlates of oxidative stress and free-radical activity in serum from asymptomatic shipyard welders. Am J Respir Crit Care Med 172:1541–1548

    Article  Google Scholar 

  • Horváth I, Hunt J, Barnes P, Alving K, Antczak A, Baraldi E, Becher G, Beurden Mv, Corradi M, Dekhuijzen R, Dweik R, Dwyer T, Effros R, Erzurum S, Gaston B, Gessner C, Greening A, Ho L, Hohlfeld J, Jöbsis Q, Laskowski D, Loukides S, Marlin D, Montuschi P, Olin A, Redington A, Reinhold P, Rensen Ev, Rubinstein I, Silkoff P, Toren K, Vass G, Vogelberg C, Wirtz H, Condensate AETFoEB (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 26:523–548

    Article  Google Scholar 

  • Hurley J, Cherrie J, Donaldson K, Seaton A, Tran C (2003) Assessment of health effects of long-term occupational exposure to tunnel dust in the London underground. Research Report TM/03/02

  • Kharitonov S, Barnes P (2001) Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 163:1693–1722

    CAS  Google Scholar 

  • Kim J, Chen J, Boyce P, Christiani D (2005) Exposure to welding fumes is associated with acute systemic inflammatory responses. Occup Environ Med 62:157–163

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Müller W (2004) Health effects of ultrafine particles. J Aerosol Sci 35:1155–1156

    Article  Google Scholar 

  • Murgia N, Muzi G, Dell’ Omo M, Montuschi P, Melchiorri D, Ciabattoni G, Abbritti EP, Orazi N, Sapia IE, Abbritti G (2006) Induced sputum, exhaled breath condensate and nasal lavage fluid in electroplating workers exposed to chromium. Int J Immunopathol Pharmacol 19:67–71

    CAS  Google Scholar 

  • Oberdörster G, Ferin J, Finkelstein G, Wade P, Corson N (1990) Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J Aerosol Sci 21:384–387

    Article  Google Scholar 

  • Oberdörster G, Gelein RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 7:111–124

    Article  Google Scholar 

  • Palmer KT, McNeill Love RM, Poole JR, Coggon D, Frew AJ, Linaker CH, Shute JK (2006) No inflammatory responses to the occupational inhalation of metal fume. Eur Respir J 27:366–373

    Article  CAS  Google Scholar 

  • Romieu I, Barraza-Villarreal A, Escamilla-Nunez C, Almstrand AC, Diaz-Sanchez D, Sly PD, Olin AC (2008) Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 121: 903–9 e6

    Google Scholar 

  • Scharrer E, Hessel H, Kronseder A, Guth W, Rolinski B, Jorres RA, Radon K, Schierl R, Angerer P, Nowak D (2007) Heart rate variability, hemostatic and acute inflammatory blood parameters in healthy adults after short-term exposure to welding fume. Int Arch Occup Environ Health 80:265–272

    Article  CAS  Google Scholar 

  • Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  • Sjogren B, Gyntelberg F, Hilt B (2006) Ischemic heart disease and welding in Scandinavian studies. Scand J Work Environ Health Suppl 2:50–53

    Google Scholar 

  • Sjögren B, Fossum T, Lindh T, Weiner J (2002) Welding and ischemic heart disease. Int J Occup Environ Health 8:309–311

    Google Scholar 

  • Ueno T, Kataoka M, Hirano A, Iio K, Tanimoto Y, Kanehiro A, Okada C, Soda R, Takahashi K, Tanimoto M (2008) Inflammatory markers in exhaled breath condensate from patients with asthma. Respirology 13:654–663

    Google Scholar 

  • Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling W, Möller W, Sommerer K, Larsson S, Svartengren M (2006) Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 28:286–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Alice Mueller-Lux, MD, Dr. Angela Conventz, PhD, Anita Musiol, Karina Müller and Dr. Thomas Schettgen, PhD, for their assistance during the measurements in the companies and in the laboratory. The authors also thank Kathy Bischof for her review of and comments on the manuscript. This study was supported by the ‘Arbeitsgemeinschaft industrieller Forschungsvereinigungen ‘‘Otto von Guericke’’ e.V.’, AIF-Grant 14437.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gube, M., Ebel, J., Brand, P. et al. Biological effect markers in exhaled breath condensate and biomonitoring in welders: impact of smoking and protection equipment. Int Arch Occup Environ Health 83, 803–811 (2010). https://doi.org/10.1007/s00420-010-0516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-010-0516-4

Keywords

Navigation