Skip to main content
Log in

Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objectives

This study was conducted to investigate the dominant sources of the urinary pyrene metabolite, 1-hydroxypyrene glucuronide (1-OHPG), in South Korean children.

Methods

Urine samples were collected from 102 non-smoking children (aged 10–14). Urinary 1-OHPG was assayed by synchronous fluorescence spectroscopy, following immuno-affinity purification using monoclonal antibody 8E11. Urinary cotinine, a metabolite of nicotine, was measured by GC/MS. Information on environmental tobacco smoke (ETS) exposure, diet, fuel type for heating home, and other possible sources of PAH exposure was collected by self-administered questionnaires.

Results

Mean (±SE) 1-OHPG levels were 1.64 (±0.06) ng/ml (range 0.04–3.27 ng/ml). Two multiple linear regression analyses (differing in how ETS was approximated: by parental smoking or urinary cotinine) revealed a positive association between urinary 1-OHPG levels and parental smoking at home (= 0.007), log urinary cotinine (= 0.165), frequent grilled (shell)fish consumption (= 0.061), and living in a commercial/other zone (= 0.007) versus a residential or industrial zone. No consistent associations were found between 1-OHPG and the child’s sex, grilled meat consumption, or fuels used to heat the home.

Conclusions

These results support that ETS, frequent grilled fish consumption, and the ambient environment are important predictors of urinary 1-OHPG levels in South Korean children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barr DB, Wilder LC, Caudill SP et al (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200

    PubMed  CAS  Google Scholar 

  • Bernert JT Jr, Turner WE, Pirkle JL et al (1997) Development and validation of sensitive method for determination of serum cotinine in smokers and nonsmokers by liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. Clin Chem 43(12):2281–2291

    PubMed  CAS  Google Scholar 

  • Buchet J, Gennart J, Mercado-Calderon F et al (1992) Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1-hydroxypyrene as a biological indicator of exposure. Br J Ind Med 49(11):761–768

    PubMed  CAS  Google Scholar 

  • Chuang J, Callahan P, Lyu C et al (1999) Polycyclic aromatic hydrocarbon exposures of children in low-income families. J Expo Anal Environ Epidemiol 9(2):85–98. doi:10.1038/sj.jea.7500003

    Article  PubMed  CAS  Google Scholar 

  • Fiala Z, Vyskocil A, Krajak V et al (2001) Environmental exposure of small children to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 74(6):411–420. doi:10.1007/s004200100239

    Article  PubMed  CAS  Google Scholar 

  • Hansen A, Raaschou-Nielsen O, Knudsen L (2006) Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. Sci Total Environ 363(1–3):70–77. doi:10.1016/j.scitotenv.2005.06.017

    PubMed  CAS  Google Scholar 

  • Hu Y, Zhou Z, Xue X et al (2006) Sensitive biomarker of polycyclic aromatic hydrocarbons (PAHs): urinary 1-hydroxyprene glucuronide in relation to smoking and low ambient levels of exposure. Biomarkers 11(4):306–318. doi:10.1080/13547500600626883

    Article  PubMed  CAS  Google Scholar 

  • IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs. In overall evaluations of carcinogenicity. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45(1):3–13

    PubMed  CAS  Google Scholar 

  • Kang D, Lee K-H, Lee K-M et al (2005) Design issues in cross-sectional biomarkers studies: urinary biomarkers of PAH exposure and oxidative stress. Mutat Res 592(1–2):138–146

    PubMed  CAS  Google Scholar 

  • Kim S, Moon S, Popkin BM (2000) The nutrition transition in South Korea. Am J Clin Nutr 71(1):44–53

    PubMed  CAS  Google Scholar 

  • Lee M, Eum K, Zoh K et al (2007) 1-hydroxypyrene as a biomarker of PAH exposure among subjects living in two separate regions from a steel mill. Int Arch Occup Environ Health 80(8):671–678. doi:10.1007/s00420-007-0178-z

    Article  PubMed  CAS  Google Scholar 

  • Mucha A, Hryhorczuk D, Serdyuk A et al (2006) Urinary 1-hydroxypyrene as a biomarker of PAH exposure in 3-year-old Ukrainian children. Environ Health Perspect 114(4):603–609

    Article  PubMed  CAS  Google Scholar 

  • Preuss R, Roßbach B, Wilhelm M, Bruning T, Angerer J (2006) External and internal exposure to polycyclic aromatic hydrocarbons (PAH) among workers in the production of fire-proof materials—proposal of a biological monitoring guidance value. Int J Hyg Environ Health 209:575–580. doi:10.1016/j.ijheh.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  • Scherer G, Frank S, Riedel K et al (2000) Biomonitoring of exposure to polycyclic aromatic hydrocarbons of nonoccupationally exposed persons. Cancer Epidemiol Biomarkers Prev 9(4):373–380

    PubMed  CAS  Google Scholar 

  • Singh R, Tucek M, Maxa K et al (1995) A rapid and simple method for the analysis of 1-hydroxypyrene glucuronide: a potential biomarker for poly cyclic aromatic hydrocarbon exposure. Carcinogenesis 16(12):2909–2915. doi:10.1093/carcin/16.12.2909

    Article  PubMed  CAS  Google Scholar 

  • Siwinska E, Mielzynska D, Bubak A et al (1999) The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. Mutat Res 445(2):147–153

    PubMed  CAS  Google Scholar 

  • Strickland P, Kang D (1999) Urinary 1-hydroxypyrene and other PAH metabolites as biomarkers of exposure to environmental PAH in air particulate matter. Toxicol Lett 108(2–3):191–199. doi:10.1016/S0378-4274(99)00089-2

    Article  PubMed  CAS  Google Scholar 

  • Strickland PT, Kang D, Bowman ED et al (1994) Identification of 1-hydroxypyrene glucuronide as a major pyrene metabolite in human urine by synchronous fluorescence spectroscopy and gas chromatography-mass spectrometry. Carcinogenesis 15(3):483–487. doi:10.1093/carcin/15.3.483

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Yoshinaga J (2007) Inhalation and dietary exposure to polycyclic aromatic hydrocarbons and urinary 1-hydroxypyrene in non-smoking university students. Int Arch Occup Environ Health 81(1):115–121. doi:10.1007/s00420-007-0188-x

    Article  PubMed  CAS  Google Scholar 

  • Symanski E, Bergamaschi E, Mutti A (2001) Inter- and intra-individual sources of variation in levels of urinary styrene metabolites. Int Arch Occup Environ Health 74(5):336–344. doi:10.1007/PL00007951

    Article  PubMed  CAS  Google Scholar 

  • Thaqi A, Franke K, Merkel G et al (2005) Biomarkers of exposure to passive smoking of school children: frequency and determinants. Indoor Air 15(5):302–310. doi:10.1111/j.1600-0668.2005.00361.x

    Article  PubMed  CAS  Google Scholar 

  • Tsai H, Wu M, Hauser R et al (2003) Exposure to environmental tobacco smoke and urinary 1-hydroxypyrene levels in preschool children. Kaohsiung J Med Sci 19(3):97–104

    Article  PubMed  CAS  Google Scholar 

  • van Wijnen J, Slob R, Jongmans-Liedekerken G et al (1996) Exposure to polycyclic aromatic hydrocarbons among Dutch children. Environ Health Perspect 104(5):530–534. doi:10.2307/3432994

    Article  PubMed  Google Scholar 

  • Viau C (2002) Biological monitoring of exposure to mixtures. Toxicol Lett 134(1–3):9–16. doi:10.1016/S0378-4274(02)00158-3

    Article  PubMed  CAS  Google Scholar 

  • Viau C, As Diakit, Ruzgyt A et al (2002) Is 1-hydroxypyrene a reliable bioindicator of measured dietary polycyclic aromatic hydrocarbon under normal conditions? J Chromatogr B Analyt Technol Biomed Life Sci 778(1–2):165–177. doi:10.1016/S0378-4347(01)00465-0

    PubMed  CAS  Google Scholar 

  • Viau C, Lafontaine M, Payan JP (2004) Creatinine normalization in biological revisited: the case of 1-hydroxypyrene. Int Arch Occup Environ Health 77(3):177–185. doi:10.1007/s00420-003-0495-9

    Article  PubMed  CAS  Google Scholar 

  • Vyskocil A, Fiala Z, Chenier V et al (2000) Assessment of multipathway exposure of small children to PAH. Environ Toxicol Pharmacol 8(2):111–118. doi:10.1016/S1382-6689(00)00032-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of The Korea Health 21 R&D Project, from the Ministry of Health and Welfare, (02-PJ1-PG1-CH03-0001), and by the Ministry of Environment of the Republic of Korea, as The Eco-technopia 21 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehee Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KH., Vermeulen, R., Lenters, V. et al. Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children. Int Arch Occup Environ Health 82, 961–968 (2009). https://doi.org/10.1007/s00420-008-0385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-008-0385-2

Keywords

Navigation