Skip to main content
Log in

No acute effects of an exposure to 50 ppm acetaldehyde on the upper airways

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objective

German MAK value of acetaldehyde has been fixed at 50 ppm to prevent from irritating effects. The threshold value is mainly based on animal experiments. The aim of this study was to evaluate acute effects of an exposure to 50 ppm acetaldehyde on the upper airways of human subjects.

Methods

Twenty subjects were exposed to 50 ppm acetaldehyde and to air in an exposure chamber for 4 h according to a crossover design. Subjective symptoms were assessed by questionnaire. Olfactory threshold for n-butanol and mucociliary transport time were measured before and after exposure. Concentrations of interleukin 1β and interleukin 8 were determined in nasal secretions taken after exposure. mRNA levels of interleukins 1β, 6 and 8, tumour necrosis factor α, granulocyte–macrophage colony-stimulating factor, monocyte chemotactic protein 1, and cyclooxygenases 1 and 2 were measured in nasal epithelial cells, gained after exposure. Possible effects were investigated by semiparametric and parametric crossover analyses.

Results

Exposure to acetaldehyde did not cause any subjective irritating symptoms. Olfactory threshold did not change. Mucociliary transport time increased insignificantly after exposure to acetaldehyde. Neither concentrations of interleukins in nasal secretions nor mRNA levels of inflammatory factors were higher after exposure to acetaldehyde.

Conclusion

An acute exposure to 50 ppm acetaldehyde did not cause any adverse effects in test subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman DG (1991) Practical statistics for medical research. CRC Press: Boca Raton

  • American Conference of Governmental Industrial Hygienists (1999) Documentation of the threshold limit values and biological indices. Acetaldehyde Cincinnati, 1–5

  • Appelman LM, Woutersen RA, Feron VJ (1982) Inhalation toxicity of acetaldehyde in rats. I. Acute and subacute studies. Toxicology 23:293–307. doi:10.1016/0300-483X(82)90068-3

    Article  PubMed  CAS  Google Scholar 

  • Australian Government Department of the Environment and Water Resources (2001) Acetaldehyde. Air toxics and indoor air quality in Australia. http://www.environment.gov.au/atmosphere/airquality/publications/sok/acetaldehyde.html

  • Badre R, Guillerm R, Abran N, Bourdin M, Dumas C (1978) Atmospheric pollution by smoking. Ann Pharm Fr 36:443–452

    PubMed  CAS  Google Scholar 

  • Baraniuk JN (1991) Neural control of human nasal secretion. Pulm Pharmacol 4:20–31. doi:10.1016/0952-0600(91)90035-2

    Article  PubMed  CAS  Google Scholar 

  • Brooks PJ, Theruvathu JA (2005) DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35:187–193. doi:10.1016/j.alcohol.2005.03.009

    Article  PubMed  CAS  Google Scholar 

  • Deitrich RA, Petersen D, Vasiliou V (2007) Removal of acetaldehyde from the body. Novartis Found Symp 285:23–40 discussion 40–51, 198–199

    Article  PubMed  CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft (1986) Acetaldehyd. Gesundheitsschädliche Arbeitsstoffe. Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten. Wiley, Weinheim

    Google Scholar 

  • Devalia JL, Bayram H, Rusznak C, Calderon M, Sapsford RJ, Abdelaziz MA et al (1997) Mechanisms of pollution-induced airway disease: in vitro studies in the upper and lower airways. Allergy 52:45–51

    Article  PubMed  CAS  Google Scholar 

  • Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–119

    PubMed  CAS  Google Scholar 

  • Diaz-Sanchez D, Tsien A, Casillas A, Dotson AR, Saxon A (1996) Enhanced nasal cytokine production in human beings after in vivo challenge with diesel exhaust particles. J Allergy Clin Immunol 98:114–123. doi:10.1016/S0091-6749(96)70233-6

    Article  PubMed  CAS  Google Scholar 

  • Dorman DC, Struve MF, Wong BA, Gross EA, Parkinson C, Willson GA et al (2008) Derivation of an inhalation reference concentration based upon olfactory neuronal loss in male rats following subchronic acetaldehyde inhalation. Inhal Toxicol 20:245–256. doi:10.1080/08958370701864250

    Article  PubMed  CAS  Google Scholar 

  • Eccles R (2000) Pathophysiology of nasal symptoms. Am J Rhinol 14:335–338. doi:10.2500/105065800781329528

    Article  PubMed  CAS  Google Scholar 

  • Gobba F (2006) Olfactory toxicity: long-term effects of occupational exposures. Int Arch Occup Environ Health 79:322–331. doi:10.1007/s00420-005-0043-x

    Article  PubMed  CAS  Google Scholar 

  • Gosepath J, Brieger J, Muttray A, Best S, Pourianfar M, Jung D et al (2006) mRNA induction and cytokine release of inflammatory mediators during in vitro exposure of human nasal respiratory epithelia to acetaldehyde. Inhal Toxicol 18:1083–1090. doi:10.1080/08958370600945549

    Article  PubMed  CAS  Google Scholar 

  • Granstrand P, Nylander-French LA, Lacks G, Holmstrom M, French JE (2001) Absence of proinflammatory cytokine gene expression in nasal biopsies from wood surface-coating industry workers. Acta Otolaryngol 121:743–749. doi:10.1080/00016480152583692

    Article  PubMed  CAS  Google Scholar 

  • Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243. doi:10.1007/s00405-006-0173-0

    Article  PubMed  CAS  Google Scholar 

  • Hummel T, Welge-Lüssen A (2006) Assessment of olfactory function. Adv Otorhinolaryngol 63:84–98

    PubMed  Google Scholar 

  • International Agency for Research on Cancer (1999) Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Vol. 71 part 2. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans World Heath Organization. International Agency for Research on Cancer, Lyon, pp 319–335

    Google Scholar 

  • Iregren A, Gamberale F, Kjellberg A (1996) SPES: a psychological test system to diagnose environmental hazards. Neurotoxicol Teratol 18:485–491. doi:10.1016/0892-0362(96)00033-5

    Article  PubMed  CAS  Google Scholar 

  • Järvholm B, Ljungkvist G, Lavenius B, Rodin N, Peterson C (1995) Acetic aldehyde and formaldehyde in cutting fluids and their relation to irritant symptoms. Ann Occup Hyg 39:591–601

    PubMed  Google Scholar 

  • Koskinen S, Vento S, Malmberg H, Tuorila H (2004) Correspondence between three olfactory tests and suprathreshold odor intensity ratings. Acta Otolaryngol 124:1072–1077. doi:10.1080/00016480410015776

    Article  PubMed  Google Scholar 

  • Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238. doi:10.1038/339237a0

    Article  PubMed  CAS  Google Scholar 

  • Lang I, Bruckner T, Triebig G (2008) Formaldehyde and chemosensory irritation in humans: a controlled human exposure study. Regul Toxicol Pharmacol 50:23–36. doi:10.1016/j.yrtph.2007.08.012

    Article  PubMed  CAS  Google Scholar 

  • Lockey J, McKay R, Barth E, Dahlsten J, Baughman R (2002) Bronchiolitis obliterans in the food flavoring manufacturing industry. Am J Respir Crit Care Med 165:A461 abstract

    Google Scholar 

  • Lötsch J, Reichmann H, Hummel T (2008) Different odor tests contribute differently to the evaluation of olfactory loss. Chem Senses 33:17–21. doi:10.1093/chemse/bjm058

    Article  PubMed  Google Scholar 

  • Mann WJ, Muttray A, Schäfer D, Klimek L, Faas M, Konietzko J (2002) Exposure to 200 ppm of methanol increases the concentrations of interleukin-1β and interleukin-8 in nasal secretions of healthy volunteers. Ann Otol Rhinol Laryngol 111:633–638

    PubMed  Google Scholar 

  • Meggs WJ, Elsheik T, Metzger WJ, Albernaz M, Bloch RM (1996) Nasal pathology and ultrastructure in patients with chronic airway inflammation (RADS and RUDS) following an irritant exposure. Clin Toxicol 34:383–396

    CAS  Google Scholar 

  • Morris JB (1997) Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the rat. Mutat Res 380:113–124. doi:10.1016/S0027-5107(97)00130-9

    PubMed  CAS  Google Scholar 

  • Morris JB (2002) Sensory nerve-mediated nasal vasodilatory response to inspired ethyl acrylate. Inhal Toxicol 14:585–597. doi:10.1080/08958370290084511

    Article  PubMed  CAS  Google Scholar 

  • Morris JB, Symanowicz PT, Olsen JE, Thrall RS, Cloutier MM, Hubbard AK (2003) Immediate sensory nerve-mediated respiratory responses to irritants in healthy and allergic airway-diseased mice. J Appl Physiol 94:1563–1571

    PubMed  CAS  Google Scholar 

  • Morris JB, Wilkie WS, Shusterman DJ (2005) Acute respiratory responses of the mouse to chlorine. Toxicol Sci 83:380–387. doi:10.1093/toxsci/kfi038

    Article  PubMed  CAS  Google Scholar 

  • Muttray A, Gosepath J, Schmall F, Emser A, Brieger J, Mayer-Popken O, et al. 2006. Eine akute Belastung mit 400 μg Ozon/m³ beeinträchtigt das Riechvermögen. http://www.tu-dresden.de/medkhno/riechen_schmecken/rostock_2006.htm#asbtracts

  • Muttray A, Jung D, Klimek L, Kreiner C (2002) Effects of an external exposure to 200 ppm methyl ethyl ketone on nasal mucosa in healthy volunteers. Int Arch Occup Environ Health 75:197–200. doi:10.1007/s00420-001-0291-3

    Article  PubMed  CAS  Google Scholar 

  • Muttray A, Klimek L, Faas M, Schäfer D, Mann W, Konietzko J (1999) The exposure of healthy volunteers to 200 ppm 1,1,1-trichloroethane increases the concentration of proinflammatory cytokines in nasal secretions. Int Arch Occup Environ Health 72:485–488. doi:10.1007/s004200050403

    Article  PubMed  CAS  Google Scholar 

  • Muttray A, Moll B, Faas M, Klimek L, Mann W, Konietzko J (2004) Acute effects of 1,1,1-trichloroethane on human olfactory functioning. Am J Rhinol 18:113–117

    PubMed  Google Scholar 

  • NIOSH Alert (2003) Preventing lung disease in workers who use or make flavorings. NIOSH Publication No. 2004–110. http://www.cdc.gov/Niosh/docs/2004-110/pdfs/2004-110.pdf

  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Toril F, Prieto L, Peris R, Perez JA, Millan M, Marin J (2000) Differences in airway responsiveness to acetaldehyde and methacholine in asthma and chronic bronchitis. Eur Respir J 15:260–265. doi:10.1034/j.1399-3003.2000.15b07.x

    Article  PubMed  CAS  Google Scholar 

  • Seeber A, Blaszkewicz M, Kiesswetter E, Bandel T, Golka K, Heitmann P et al (1994) Biomonitoring, Leistung und Befinden bei inhalativer Ethanolexposition. In: Kessel R (ed) Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin, 34. Jahrestagung. Gentner, Stuttgart, pp 205–209

    Google Scholar 

  • Silverman L, Schulte H, First MW (1946) Further studies on sensory response to certain industrial solvent vapors. J Ind Hyg Toxicol 28:262–266

    CAS  Google Scholar 

  • Sim VM, Pattle RE (1957) Effect of possible smog irritants on human subjects. J Am Med Assoc 165:1908–1913

    PubMed  CAS  Google Scholar 

  • Sisson JH, Tuma DJ (1994) Vapor phase exposure to acetaldehyde generated from ethanol inhibits bovine bronchial epithelial cell ciliary motility. Alcohol Clin Exp Res 18:1252–1255. doi:10.1111/j.1530-0277.1994.tb00114.x

    Article  PubMed  CAS  Google Scholar 

  • Smith WL, Dewitt DL (1996) Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol 62:167–215. doi:10.1016/S0065-2776(08)60430-7

    Article  PubMed  CAS  Google Scholar 

  • Stanek J, Symanowicz PT, Olsen JE, Gianutsos G, Morris JB (2001) Sensory-nerve-mediated nasal vasodilatory response to inspired acetaldehyde and acetic acid vapors. Inhal Toxicol 13:807–822

    Article  PubMed  CAS  Google Scholar 

  • Teeguarden JG, Bogdanffy MS, Covington TR, Tan C, Jarabek AM (2008) A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal Toxicol 20:375–390. doi:10.1080/08958370801903750

    Article  PubMed  CAS  Google Scholar 

  • Varga EM, Jacobson MR, Masuyama K, Rak S, Till SJ, Darby Y et al (1999) Inflammatory cell populations and cytokine mRNA expression in the nasal mucosa in aspirin-sensitive rhinitis. Eur Respir J 14:610–615. doi:10.1034/j.1399-3003.1999.14c21.x

    Article  PubMed  CAS  Google Scholar 

  • Vaughan RP, Szewczyk MT Jr, Lanosa MJ, Desesa CR, Gianutsos G, Morris JB (2006) Adenosine sensory transduction pathways contribute to activation of the sensory irritation response to inspired irritant vapors. Toxicol Sci 93:411–421. doi:10.1093/toxsci/kfl061

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TA, Schmidt SC, Rennard SI, Tuma DJ, Sisson JH (2000) Acetaldehyde-stimulated PKC activity in airway epithelial cells treated with smoke extract from normal and smokeless cigarettes. Proc Soc Exp Biol Med 225:91–97. doi:10.1046/j.1525-1373.2000.22511.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from Deutsche Forschungsgemeinschaft (DFG, GO-1022/1 and GO-1022/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muttray.

Additional information

Data will be included in part in doctorial thesis of A. Pribisz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muttray, A., Gosepath, J., Brieger, J. et al. No acute effects of an exposure to 50 ppm acetaldehyde on the upper airways. Int Arch Occup Environ Health 82, 481–488 (2009). https://doi.org/10.1007/s00420-008-0354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-008-0354-9

Keywords

Navigation