Skip to main content
Log in

Dose–response relationships between occupational exposure to potash, diesel exhaust and nitrogen oxides and lung function: cross-sectional and longitudinal study in two salt mines

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Objective

Several studies have shown that underground salt miners may have an increased incidence of chest symptoms and sometimes decreased lung function. Miners of two salt mines were investigated to evaluate relationships between the lung function and the workplace exposure. The effect of nitrogen monoxide (NO) and nitrogen dioxide (NO2) was investigated in view of the recent debate on European occupational exposure limits.

Methods

A total of 410/463 miners (mine A/mine B) were examined cross-sectional and 75/64% of the first cohort were examined after a 5-year period. Exposure was measured by personal sampling. Personal lifetime exposure doses of salt dust, diesel exhaust, NO2 and NO were calculated for all miners. Dose–response relationships were calculated by multiple regression analysis. Each exposure component acted as an indicator for the complex exposure.

Results

Exposure response relationships were shown in the cross-sectional and longitudinal investigations in both mines. In the 5-year period, the adjusted (age, smoking, etc.) effect of the exposure indicators resulted in a mean decrease of FEV1 between −18 ml/year (mine A) and −10 ml/year (mine B). The personal concentrations related to this effect were 12.6/7.1 mg/m³ inhalable dust, 2.4/0.8 mg/m³ respirable dust, 0.09/0.09 mg/m³ diesel exhaust, 0.4/0.5 ppm NO2 and 1.7/1.4 ppm NO (mine A/B). Exposure was related to symptoms of chronic bronchitis only in mine B.

Conclusion

The effects found in both mines indicate that the mixed exposure can cause lung function disorders in salt miners exposed over a long time. Because of the high correlation of the concentrations it was not possible to determine the effects of a single exposure component separately or to recommend a specific occupational exposure limit. However, possible maximum effects associated with the mixed exposure can be evaluated in the ranges of concentrations of the individual substances in the mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ädelroth E, Hedlund U, Blomberg A, Helleday R, Ledin MC, Levin JO, Pourazar J, Sandstrom T, Jarvholm B (2006) Airway inflammation in iron ore miners exposed to dust and diesel exhaust. Eur Respir J 4:714–719

    Article  CAS  Google Scholar 

  • Ames RG, Reger RB, Hall DS (1984) Chronic respiratory effects of exposure to diesel emissions in coal mines. J Occup Med 39:389–394

    CAS  Google Scholar 

  • American Thoracic Society (1995) Standardization of spirometry: 1994 update. ATS statement. Am J Respir Crit Care Med 52:1107–1136

    Google Scholar 

  • Attfield MD, Trabant GD, Wheeler RW (1982) Exposure to diesel fumes and dust at six potash mines. Ann Occup Hyg 26:817–831

    Article  PubMed  CAS  Google Scholar 

  • Azoulay E, Soler P, Blayo MC, Basset F (1977) Nitric oxide effects on lung structure and blood oxygen affinity in rats. Bull Eur Physiopathol Respir 13:629–644

    PubMed  CAS  Google Scholar 

  • Bakke B, Ulvestad B, Stewart P, Lund MB, Eduard W (2001) Effects of blasting fumes on exposure and short-term lung function changes in tunnel construction workers. Scand J Work Environ Health 27:250–257

    PubMed  CAS  Google Scholar 

  • Bakke B, Ulvestad B, Stewart P, Eduard W (2004) Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers. Occup Envirn Med 61:262–269

    Article  CAS  Google Scholar 

  • Bauer HD, Dahmann D, Henning F (1991) Coulometric measurement of diesel engine emissions in the non-coal mining. In German (Coulometrische Bestimmung von Dieselmotoremissionen im Nichtkohlenbergbau). Staub Reinhaltung der Luft 51:319–325

    CAS  Google Scholar 

  • Bayram H, Ito K, Issa R, Ito M, Sukkar M, Chung KF (2006) Regulation of human lung epithelial cell numbers by diesel exhaust particles. Eur Respir J 4:705–713

    Article  CAS  Google Scholar 

  • Beeckman LA, Wang ML, Petsonk EL, Wagner GR (2001) Rapid declines in FEV1 and subsequent respiratory symptoms, illnesses, and mortality in coal miners in the United States. Am J Respir Crit Care Med 163:633–639

    PubMed  CAS  Google Scholar 

  • Behndig AF, Mudway IS, Brown JL, Stenfors N, Helleday R, Duggan ST, Wilson SJ, Boman C, Cassee FR, Frew AJ, Kelly FJ, Sandstrom T, Blomberg A (2006) Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J 2:359–365

    Article  CAS  Google Scholar 

  • Blomberg A, Krishna MT, Helleday R, Soderberg M, Ledin MC, Kelly FJ, Frew AJ, Holgate ST, Sandstrom T (1999) Persistent airway inflammation but accommodated antioxidant and lung function responses after repeated daily exposure to nitrogen dioxide. Am J Respir Crit Care Med 2:536–543

    Google Scholar 

  • Blomberg A, Krishna MT, Bocchino V, Biscione GL, Shute JK, Kelly FJ, Frew AJ, Holgate ST, Sandstrom T (1997) The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. Am J Respir Crit Care Med 156:418–424

    PubMed  CAS  Google Scholar 

  • Braun-Fahrländer C, Vuille JC, Sennhauser FH, Neu U, Künzle T, Grize L, Gassner M, Minder C, Schindler C, Varonier HS, Wüthrich B, the Scarpol Team (1997) Respiratory health and long-term exposure to air pollutants in Swiss schoolchildren. Am J Respir Crit Care Med 155:1042–1049

    PubMed  Google Scholar 

  • Bylin G (1993) Health risk evaluation of nitrogen oxides. Controlled studies on humans. Scand J Work Environ Health 19(Suppl 2):37–43

    PubMed  Google Scholar 

  • Bylin G, Lindvall T, Rehn T, Sundin B (1985) Effects of short-term exposure to ambient nitrogen dioxide concentrations on human bronchial reactivity and lung function. Eur J Respir Dis 66:205–217

    PubMed  CAS  Google Scholar 

  • Carta P, Aru G, Barbieri MT, Avataneo G, Casula D (1996) Dust exposure, respiratory symptoms, and longitudinal decline of lung function in young coal miners. Occup Environ Med 53:312–319

    Article  PubMed  CAS  Google Scholar 

  • Chauhan AJ, Krishna MT, Frew AJ, Holgate ST (1998) Exposure to nitrogen dioxide (NO2) and respiratory disease risk. Rev Environ Health 13:73–90

    PubMed  CAS  Google Scholar 

  • Dahmann D, Monz C, Sönksen H (2007) Exposure Assessment in German Potash Mining. Int Arch Occup Environ Health 81:95–107

    Article  PubMed  CAS  Google Scholar 

  • DIN (German Institute for Standardization) (1993) EN (European Norm) 481: Workplace atmospheres; Size fraction definitions for measurement of airborne particles. German version of EN 481: 09/1993

  • Folinsbee LJ (1992) Does nitrogen dioxide exposure increase airways responsiveness? Toxicol Ind Health 8:273–283

    PubMed  CAS  Google Scholar 

  • Frampton MW, Smeglin AM, Roberts N, Finkelstein JN, Morrow PE, Utell MJ (1989) Nitrogen dioxide exposure in vivo and human alveolar macrophage inactivation of influenza virus in vitro. Environ Res 48:179–192

    Article  PubMed  CAS  Google Scholar 

  • Frampton MW, Morrow PE, Cox C, Gibb R, Speers D, Utell MJ (1991) Effect of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. Am Rev Respir Dis 143:522–527

    PubMed  CAS  Google Scholar 

  • Frampton MW, Boscia J, Roberts NJ Jr, Azadniv M, Torres A, Cox C, Morrow PE, Nichols J, Chalupa D, Frasier LM, Gibb FR, Speers DM, Tsai Y, Utell MJ (2002) Nitrogen dioxide exposure: effects on airway and blood cells. Am J Physiol Lung Cell Mol Physiol 1:55–65

    Google Scholar 

  • Frey HH (1969) The effect of potash dust in the region of the upper airways. In German (Die Wirkung von Kalisalzstaub im Bereich der oberen Luftwege). Habilitation treatise, Medical Academy Erfurt

  • Gamble J, Jones W, Hudak J (1983) An epidemiological study of salt miners in diesel and nondiesel mines. Am J Ind Med 4:435–458

    Article  PubMed  CAS  Google Scholar 

  • Helleday R, Sandström T, Stjernberg N (1994) Differences in bronchoalveolar cell responses to nitrogen dioxide exposure in non-smokers and smokers. Eur Respir J 7:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Hogman M, Frostell CG, Hedenstrom H, Hedenstierna G (1993) Inhalation of nitric oxide modulates adult human bronchial tone. Am Rev Respir Dis 148:1474–1478

    PubMed  CAS  Google Scholar 

  • Hohbein K (1989) Association between chronic unspecific airway diseases and exposure to explosive gases, motor vehicle fumes and potash dust in salt miners of the German Democratic Republic. In German (Chronische unspezifische Atemtrakterkrankungen bei Kalibergleuten der DDR in Beziehung zur Exposition durch Spreng- und Kraftfahrzeugabgase sowie Kalisalzstaub). Dissertation, Academy of Advanced Medical Education Berlin, Berlin

  • Hyde D, Orthoefer J, Dungworth D, Tyler W, Carter R, Lum H (1978) Morphometric and morphologic evaluation of pulmonary lesions in beagle dogs chronically exposed to high ambient levels of air pollutants. Lab Invest 38:455–469

    PubMed  CAS  Google Scholar 

  • International Programme on Chemical Safety (IPCS) (1997) Nitrogen Oxides, 2nd edn. Environ Health Crit 188. World Health Organisation, Geneva

  • Jörgensen HS, Kolmodin-Hedman B, Stjernberg N (1988) Follow-up study on pulmonary function and respiratory tract symptoms in workers in a Swedish iron ore mine. J Occup Med 30:953–958

    Article  PubMed  Google Scholar 

  • Kato A, Nagai A, Kagawa J (2000) Morphological changes in rat lung after long-term exposure to diesel emissions. Inhal Toxicol 6:469–490

    Article  Google Scholar 

  • Li N, Nel AE (2006) The cellular impacts of diesel exhaust particles: beyond inflammation and death. Eur Respir J 27:667–668

    Article  PubMed  CAS  Google Scholar 

  • Lotz G, Gierke E, Kersten N, Säverin R, Schneider WD, Thürmer H, Tittelbach U (1997) Exposure response relationships between occupational exposure to potash and lung function in salt miners. Eur Respir J Suppl 25:232s

    Google Scholar 

  • Lotz G, Backé E, Gierke E, Kersten N, Säverin R, Schneider WD, Thürmer H, Tittelbach U (1998) About the effect of salt dusts on the respiratory system (final report). In German (Zur Wirkung von Salzstäuben auf das Atmungssystem (Abschlussbericht)). Series of the Federal Institute for Occupational Safety and Health (BAuA), Fb 791, Dortmund/Berlin

  • Markham JW, Tan LK-T (1981) Concentrations and health effects of potash dust. Am Ind Hyg Assoc J 42:671–674

    PubMed  CAS  Google Scholar 

  • Mercer RR, Costa DL, Crapo JD (1995) Effects of prolonged exposure to low doses of nitric oxide or nitrogen dioxide on the alveolar septa of the adult rat lung. Lab Invest 73:20–28

    PubMed  CAS  Google Scholar 

  • Mercer RR (1999) Morphometric analysis of alveolar responses of F344 rats to subchronic inhalation of nitric oxide. Res Rep Health Eff Inst 88:1–19

    PubMed  CAS  Google Scholar 

  • Morrow PE, Utell MJ, Bauer MA et al (1992) Pulmonary performance of elderly normal subjects and subjects with chronic obstructive pulmonary disease exposed to 0.3 ppm nitrogen dioxide. Am Rev Respir Dis 145:291–300

    PubMed  CAS  Google Scholar 

  • Mohsenin V (1988) Airway responses to 2.0 ppm nitrogen dioxide in normal subjects. Arch Environ Health 43:242–246

    Article  PubMed  CAS  Google Scholar 

  • Nordenhall C, Pourazar J, Ledin MC, Levin JO, Sandstrom T, Adelroth E (2001) Diesel exhaust enhances airway responsiveness in asthmatic subjects. Eur Respir J 17:909–915

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, Coates A, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson DC, MacIntyre N, McKay R, Miller MR, Navajas D, Pedersen OF, Wanger J (2005) Interpretative strategies for lung function tests. Eur Respir J 26:948–968

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are ssociated with the number of ultrafine particles. Am J Respir Crit Care Med 155:1376–1383

    PubMed  CAS  Google Scholar 

  • Possner W (1967) Studies about the prevalence of bronchitis and ventilation disorders in salt miners. In German (Untersuchungen zur Bronchitisprävalenz und Häufigkeit von Ventilationsstörungen bei Kaliarbeitern) Occupational Medicine in Salt Mining. Report F/E-No. 452016/7003/67. State owned Enterprise Potash (VE Kombinat Kali)

  • Quanjer PhH, Tammeling GJ, Cotes JE et al (1993) Lung volumes and forced ventilatory flows. Eur Respir J 6(Suppl 16):5–40

    Google Scholar 

  • Regenspurger G (1966) Lung function investigations of the exposure of the airway system in the underground environment of salt mining. In German (Lungenfunktionsdiagnostische Untersuchungen zur Frage der Belastung der Atmungsorgane durch das Untertagemilieu im Kalibergbau) Dissertation, Medical Academy Erfurt, Erfurt

  • Reger R, Hancock H, Hankinson J, Hearl F, Merchant J (1982) Coal miners exposed to diesel exhaust emissions. Ann Occup Hyg 26:799–815

    Article  PubMed  CAS  Google Scholar 

  • Roger J, Horstmann D, McDonnel W, Kehrl H, Ives P, Seal E, Chapman R, Massaro E (1990) Pulmonary function, airway responsiveness, and respiratory symptoms in asthmatics following exercise in NO2. Toxicol Ind Health 6:155–171

    PubMed  CAS  Google Scholar 

  • Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, Frew A (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 3:702–709

    Google Scholar 

  • Samoli E, Aga E, Touloumi G, Nisiotis K, Forsberg B, Lefranc A, Pekkanen J, Wojtyniak B, Schindler C, Niciu E, Brunstein R, Dodic Fikfak M, Schwartz J, Katsouyanni K (2006) Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 27:1129–1137

    Article  PubMed  CAS  Google Scholar 

  • Sandström T, Ledin MC, Thomasson L, Helleday R, Stjernberg N (1992) Reductions in bronchoalveolar lymphocyte subpopulations following repeated exposure to 1.5 ppm nitrogen dioxide. Br J Ind Med 49:850–854

    PubMed  Google Scholar 

  • Schuster A (2000) Diesel engine emissions. Leoben: Austrian Centre to Combat Dust (Silicosis) (ÖSBS) of the Austrian Social Insurance for Occupational Risks (AUVA). In German (Dieselmotoremissionen”, Österreichische Staub- (Silikose-) Bekämpfungsstelle (ÖSBS): http://www.oesbs.at/DME.pdf (accessed on 01.09.2007)

  • SCOEL (2003) Nitrogen monoxide. Recommendation of the scientific committee on occupational exposure limits. Summary, SCOEL/SUM/89 final. Scientific Committee on Occupational Exposure Limits to Chemical Agents, Bruxelles, http://ec.europa.eu/employment_social/health_safety/docs/oel_sum_89_nitrogen_monoxide_en.pdf (accessed on 01.09.2007)

  • Siafakas NM, Vermeire P, Pride NB, Paoletti P, Gibson J, Howard P, Yernault JC, Decramer M, Higenbottam T, Postma DS, Rees J on behalf of the Task Force (1995) Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur Respir J 8:1398–1420

    Article  PubMed  CAS  Google Scholar 

  • Soutar CA, Hurley JF, Miller BG, Cowie HA, Buchanan D (2004) Dust concentrations and respiratory risks in coalminers: key risk estimates from the Britisch Pneumoconiosis Field Research. Occup Environ Med 61:477–481

    Article  PubMed  CAS  Google Scholar 

  • Stenfors N, Nordenhall C, Salvi SS, Mudway I, Soderberg M, Blomberg A, Helleday R, Levin JO, Holgate ST, Kelly FJ, Frew AJ, Sandstrom T (2004) Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel. Eur Respir J 1:82–86

    Article  CAS  Google Scholar 

  • Strand V, Salomonsson P, Lundahl J, Bylin G (1996) Immediate and delayed effects of nitrogen dioxide exposure at an ambient level on bronchial responsiveness to histamine in subjects with asthma. Eur Respir J 9:733–740

    Article  PubMed  CAS  Google Scholar 

  • Strand V, Svartengren M, Rak S, Barck C, Bylin G (1998) Repeated exposure to an ambient level of NO2 enhances asthmatic response to a nonsymptomatic allergen dose. Eur Respir J 1:6–12

    Article  Google Scholar 

  • Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandstrom T, Dahlen SE (2001) Health effects of diesel exhaust emissions. Eur Respir J 4:733–746

    Article  Google Scholar 

  • Taggart SCO, Custovic A, Francis HC, Faragher EB, Yates CJ, Higgins BG, Woodcock A (1996) Asthmatic bronchial hyperresponsiveness varies with ambient levels of summertime air pollution. Eur Respir J 9:1146–1154

    Article  PubMed  CAS  Google Scholar 

  • Ulvestad B, Lund MB (2003) Increased risk of chronic obstructive pulmonary disease among tunnel construction workers. In Norwegian. Tidsskr Nor Laegeforen 28:2292–2295

  • US Environmental Protection Agency (2002) Health Assessment Document for Diesel Engine Exhaust. Office of Research and Development, National Center for Environmental Assessment, EPA Washington Office, Washington, DC, EPA/600/8–90/057F

  • Wegmann M, Fehrenbach A, Heimann S, Fehrenbach H, Renz H, Garn H, Herz U (2005) NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57bl/6 mice. Exp Toxicol Pathol 6:341–350

    Article  CAS  Google Scholar 

  • Wichmann HE (2003) Estimate of positive health effects by te use of particle filters in diesel vehicles in Germany. In German (Abschätzung positiver gesundheitlicher Auswirkungen durch den Einsatz von Partikelfiltern bei Dieselfahrzeugen in Deutschland). Federal Environmental Agency (UBA) 1–45

  • World Health Organisation (1961) Definition and diagnosis of pulmonary disease with special reference to chronic bronchitis and emphysema. Chronic Cor pulmonale. WHO Tech Rep Ser 213:14

    Google Scholar 

Download references

Acknowledgments

We thank the miners, which took part in both parts of the study and gave us the possibility to realise a longitudinal investigation. We thank the K + S Aktiengesellschaft (K + S AG), especially Heinrich Sönksen, Klaus Herden, Franz X. Spachtholz, the KALI GmbH and the company medical service, especially Manfred Michl, for support with the organisation of the study. We acknowledge Dirk Dahmann and his coworkers, especially Christian Monz, Institut für Gefahrstoff-Forschung der Bergbau-Berufsgenossenschaft IGF, and Bernd Lindecke (K + S AG) for their commitment to doing the exposure measurements. We thank Gerda Machul, Renate Gowitzke, Barbara Wojtkowiak and Andrea Ott (BAuA) for their cooperation in the clinical investigations and numerous other co-workers for the assistance in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Lotz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotz, G., Plitzko, S., Gierke, E. et al. Dose–response relationships between occupational exposure to potash, diesel exhaust and nitrogen oxides and lung function: cross-sectional and longitudinal study in two salt mines. Int Arch Occup Environ Health 81, 1003–1019 (2008). https://doi.org/10.1007/s00420-007-0294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-007-0294-9

Keywords

Navigation