Skip to main content
Log in

Complementary energy principle associated with modified couple stress theory for Euler micro-beams considering support movements and negative Poisson's ratio

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The complementary energy principle associated with the modified couple stress theory (MCST) is proposed and proved for analyzing the size effects of Euler micro-beams considering support movements and negative Poisson's ratio. The analytical solutions with the size effects are obtained and analyzed for the support reactions, internal forces, curvatures, rotations and deflections separately based on the principle. The results show that the support reactions and internal forces are greatly affected by the size effects when the support displacements are considered. It means that the size effects exist in piezoresistive pressure sensors that are sensitive to stresses. Moreover, the direction changes to the opposite for the total moment when the ratio of the material scale parameter l to the height of the micro-beam h (l/h) goes from 0 to 1. The deflections, curvatures and rotations have nothing to do with the size effects, respectively, if the support movements are only considered. Negative Poisson's ratio materials may be a good choice to verify the controversial issue of whether Poisson's ratio should be considered in the MCST beam model for the micro-scale experiments. The main reason is that the influence of negative Poisson's ratio on the size effects is larger than that of positive Poisson's ratio in the theoretical analysis. The analytical solutions agree with the published data for the deflections and rotations without the support movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shoaib, M., Hamid, N.H., Malik, A.F., et al.: A review on key issues and challenges in devices level MEMS testing. J Sens. 2016, 1–14 (2016)

  2. Cornell, B.A., Braach-Maksvytis, V.L.B., King, L.G., et al.: A biosensor that uses ion-channel switches. Nature 387, 580–583 (1997)

    Article  Google Scholar 

  3. Lin, V.S.Y., Motesharei, K., Dancil, K.P.S., et al.: A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997)

    Article  Google Scholar 

  4. Koochi, A., Abadyan, M.: Nonlinear Differential Equations in Micro/Nano Mechanics: Application in Micro/Nano Structures and Electromechanical Systems. Elsevier. (2020)

  5. Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)

    Article  Google Scholar 

  6. Kiener, D., Grosinger, W., Dehm, G., Pippan, R.: A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater. 56, 580–592 (2008)

    Article  Google Scholar 

  7. Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004)

    Article  Google Scholar 

  8. Stolken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  9. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  10. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  11. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  12. Ma, Q., Clarke, D.R.: Size-dependent hardness of silver single-crystals. J Mater Res. 10, 853–863 (1995)

    Article  Google Scholar 

  13. McElhaney, K.W., Vlassak, J.J., Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res. 13, 1300–1306 (1998)

    Article  Google Scholar 

  14. Voigt, W.: Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals). Abh Ges Wissen Göttingen. 34, 3 (1887)

    Google Scholar 

  15. Cosserat, E., Cosserat, F.: Theorie des corps dédormables. A. Hermann et fils. (1909)

  16. Eringen, A.C.: Simple microfluids. Int J Eng Sci. 2, 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eringen, A.C.: Linear theory of micropolar elasticity. J Maths Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  18. Eringen, A.C.: Micropolar fluids with stretch. Int J Eng Sci. 7, 115–127 (1969)

    Article  MATH  Google Scholar 

  19. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int J Solids Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  20. Russillo, A.F., Failla, G., Alotta, G., et al.: On the dynamics of nano-frames. Int. J. Eng. Sci. 160, 103433 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Barretta, R., Fabbrocino, F., Luciano, R., et al.: Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. 27, 869–875 (2020)

    Article  Google Scholar 

  22. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurtin, M.E., Ian-Murdoch, A.: A continuum theory of elastic material surfaces. Arch Ration Mech Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  25. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koiter, W.T.: Couple-stresses in the theory of elasticity, I & II. Philos. Trans. R. Soc. London Ser B. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  28. Sulem, J., Vardoulakis, I.: Bifurcation analysis in geomechanics. Chemical Rubber Company Press. (1995)

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  31. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  32. Kong, S.: A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Meth. Eng. 29, 1–31 (2021)

  33. Thai, H.T., Vo, T.P., Nguyen, T.K., et al.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  34. Roudbari, M.A., Jorshari, T.D., Lü, C., et al.: A review of size-dependent continuum mechanics models for micro-and nano-structures. Thin Walled Struct. 170, 108562 (2022)

    Article  Google Scholar 

  35. Song, P., Ma, Z., Ma, J., et al.: Recent progress of miniature MEMS pressure sensors. Micromachines. 11, 56 (2020)

    Article  Google Scholar 

  36. Fiorillo, A.S., Critello, C.D., Pullano, S.A.: Theory, technology and applications of piezoresistive sensors: a review. Sens Actuators A. 281, 156–175 (2018)

    Article  Google Scholar 

  37. Rezaiee-Pajand, M., Karimipour, A.: Three stress-based triangular elements. Eng. Comput. 36, 1325–1345 (2020)

    Article  Google Scholar 

  38. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smyshlyaev, V.P., Fleck, N.A.: Bounds and estimates for the overall plastic behaviour of composites with strain gradient effects. Proc. R. Soc. Lond. 451, 795–810 (1995)

    MATH  Google Scholar 

  40. Georgiadis, H.G., Grentzelou, C.G.: Energy theorems and the J-integral in dipolar gradient elasticity. Int. J. Solids Struct. 43, 5690–5712 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Castrenze, P.: A micromorphic approach to stress gradient elasticity theory with an assessment of the boundary conditions and size effects. ZAAM-J. Appl. Math. Mech. 98, 1528–1553 (2018)

    Article  MathSciNet  Google Scholar 

  42. Polizzotto, C.: Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models. Int J Solids Struct. 80, 405–419 (2016)

    Article  Google Scholar 

  43. Polizzotto, C.: Stress gradient versus strain gradient constitutive models within elasticity. Int. J. Solids Struct. 51, 1809–1818 (2014)

    Article  Google Scholar 

  44. Tran, V.P., Brisard, S., Guilleminot, J., Sab, K.: Mori-Tanaka estimates of the effective elastic properties of stress-gradient composites. Int. J. Solids Struct. 146, 55–68 (2018)

    Article  Google Scholar 

  45. Polizzotto, C.: A unifying variational framework for stress gradient and strain gradient elasticity theories. Eur. J. Mech A-Solid. 49, 430–440 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Beni, Y.T., Koochi, A., Abadyan, M.: Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS. Physica E. 43, 979–988 (2011)

    Article  Google Scholar 

  47. Ghayesh, M.H., Farokhi, H., Gholipour, A.: Large-amplitude dynamics of a functionally graded microcantilever with an intermediate spring-support and a point-mass. Acta Mech. 228, 4309–4323 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Farokhi, H., Ghayesh, M.H., Gholipour, A., et al.: Modal interactions and energy transfers in large-amplitude vibrations of functionally graded microcantilevers. J. Vib. Control. 24, 3882–3893 (2018)

    Article  MathSciNet  Google Scholar 

  49. Ma, H., Gao, X., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Talimian, A., Péter, B.: Dynamic stability of a size-dependent micro-beam. Eur J Mech a-Solid. 72, 245–251 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dehrouyeh-Semnani, A.M., Nikkhah-Bahrami, M.: A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory. Int. J. Eng. Sci. 86, 20–25 (2015)

    Article  Google Scholar 

  52. Kwon, Y.R., Lee, B.C.: Numerical evaluation of beam models based on the modified couple stress theory. Mech Adv Mater Struct. 29, 1511–1522 (2020)

  53. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Article  Google Scholar 

  54. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials (vol 10, pg 823, 2011). Nat. Mater. 18, 406 (2019)

    Article  Google Scholar 

  55. Ho, D.T., Park, S.D., Kwon, S.Y., Park, K., Kim, S.Y.: Negative Poisson’s ratios in metal nanoplates. Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  56. Saxena, K.K., Das, R., Calius, E.P.: Three decades of auxetics research - materials with negative poisson’s ratio: a review. Adv. Eng. Mater. 18, 1847–1870 (2016)

    Article  Google Scholar 

  57. Park, S.K., Gao, X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  Google Scholar 

  58. Sepehri, S., Jafari, H., Mashhadi, M.M., et al.: Small-scale effects on wave propagation in planar micro-lattices. J. Sound Vib. 494, 115894 (2021)

    Article  Google Scholar 

  59. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids. 59, 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Karttunen, A.T., Romanoff, J., Reddy, J.N.: Exact microstructure-dependent Timoshenko beam element. Int. J. Mech. Sci. 111, 35–42 (2016)

    Article  Google Scholar 

  61. Arbind, A., Reddy, J.N.: Nonlinear analysis of functionally graded microstructure-dependent beams. Compos. Struct. 98, 272–281 (2013)

    Article  Google Scholar 

  62. Akgöz, B., Civalek, Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Article  MATH  Google Scholar 

  63. Shang, Y., Li, C.F., Jia, K.Y.: 8-node hexahedral unsymmetric element with rotation degrees of freedom for modified couple stress elasticity. Int. J. Numer. Methods Eng. 121, 2683–2700 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 10972015 and 11172015) and Beijing Natural Science Foundation (No. 8162008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijiang Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Peng, Y. Complementary energy principle associated with modified couple stress theory for Euler micro-beams considering support movements and negative Poisson's ratio. Arch Appl Mech 92, 2119–2135 (2022). https://doi.org/10.1007/s00419-022-02164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-022-02164-8

Keywords

Navigation