Skip to main content
Log in

Buoyancy effects on the supersonic steam jet injection into cocurrently and countercurrently flowing water

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, the hydrodynamics of the negatively buoyant supersonic steam jet injected into the water has been investigated based on the effects imparted by its density difference with the water in free and confined configurations. In case of both the upward and downward steam’s free injection, the steam jet-water flow has shown a clear deviation from the non-dimensionalized Boussinesq character. However, in the confined injection, the steam jet creates recirculation regions contributing to enhancing mixing with the water. The generation of recirculation regions owes to the existence of the low-pressure regions at the nozzle exit, baroclinic torque and buoyantly influenced flows, which is associated with the density difference between the steam and water and the shear between the two phases. The buoyancy affects the flow domains in a nonuniform manner. It affects the fluctuating quantities marginally in the jet-developing region, and in the middle section, however, its effect is dominant in the steam jet’s tip region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Afrasyab, K., Sanaullah, K., Takriff, M.S., Zen, H., Fong, L.S.: Inclined injection of supersonic steam into subcooled water: a CFD analysis. Adv. Mater. Res. 845, 101–107 (2013). doi 10.4028/www.scientific.net/AMR.845.101

  2. Khan, A., Sanaullah, K., Sobri Takriff, M., Hussain, A., Shah, A., Rafiq Chughtai, I.: Void fraction of supersonic steam jet in subcooled water. Flow Meas. Instrum. 47, 35–44 (2016). https://doi.org/10.1016/J.FLOWMEASINST.2015.12.002

    Article  Google Scholar 

  3. Khan, A.: CFD Based Hydrodynamic Parametric Study of Inclined Injected Supersonic Steam into Subcooled Water (2014). https://doi.org/10.3850/978-981-09-4587-9_P03.

  4. Khan, A., Sanaullah, K., Haq, N.U.: Development of a sensor to detect condensation of super-sonic steam. Adv. Mater. Res. 650, 482–487 (2013). https://doi.org/10.4028/www.scientific.net/AMR.650.482

    Article  Google Scholar 

  5. Khan, A., Sanaullah, K., Takriff, M.S., Zen, H., Rigit, A.R.H., Shah, A., Chughtai, I.R.: Numerical and experimental investigations on the physical characteristics of supersonic steam jet induced hydrodynamic instabilities. Asia-Pac. J. Chem. Eng. 11, 271–283 (2016). https://doi.org/10.1002/apj.1963

    Article  Google Scholar 

  6. Khan, A., Takriff, M.S., Rosli, M.I., Othman, N.T.A., Sanaullah, K., Rigit, A.R.H., Shah, A., Ullah, A., Mushtaq, M.U.: Turbulence dissipation and its induced entrainment in subsonic swirling steam injected in cocurrent flowing water. Int. J. Heat Mass Transf. 145, 118716 (2019). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.118716

    Article  Google Scholar 

  7. Khan, A., Takriff, M.S., Rosli, M.I., Othman, N.T.A., Sanaullah, K., Rigit, A.R.H., Shah, A., Ullah, A.: Flow characteristics within the wall boundary layers of swirling steam flow in a pipe comprising horizontal and inclined sections. Korean J. Chem. Eng. 37, 19–36 (2020). https://doi.org/10.1007/s11814-019-0404-x

    Article  Google Scholar 

  8. Khan, A., Haq, N.U., Chughtai, I.R., Shah, A., Sanaullah, K.: Experimental investigations of the interface between steam and water two phase flows. Int. J. Heat Mass Transf. 73, 521–532 (2014). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.02.035

    Article  Google Scholar 

  9. Hogekamp, S., Schubert, H., Wolf, S.: Steam jet agglomeration of water soluble material. Powder Technol. 86, 49–57 (1996). https://doi.org/10.1016/0032-5910(95)03037-9

    Article  Google Scholar 

  10. Hogekamp, S.: Steam Jet agglomeration—part 1: production of redispersible agglomerates by steam jet agglomeration. Chem. Eng. Technol. 22, 421–424 (1999). https://doi.org/10.1002/(SICI)1521-4125(199905)22:5%3c421::AID-CEAT421%3e3.0.CO;2-0

    Article  Google Scholar 

  11. Demou, A.D., Frantzis, C., Grigoriadis, D.G.E.: A numerical methodology for efficient simulations of non-Oberbeck–Boussinesq flows. Int. J. Heat Mass Transf. 125, 1156–1168 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.135

    Article  Google Scholar 

  12. Şengül, T., Wang, S.: Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows. J. Math. Fluid Mech. 20, 1173–1193 (2018). https://doi.org/10.1007/s00021-018-0361-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Safari, H., Krafczyk, M., Geier, M.: A lattice Boltzmann model for thermal compressible flows at low Mach numbers beyond the Boussinesq approximation. Comput. Fluid (2018). https://doi.org/10.1016/j.compfluid.2018.04.016

    Article  Google Scholar 

  14. Widmayer, K.: Convergence to stratified flow for an inviscid 3D Boussinesq system. Commun. Math. Sci. 16, 1713–1728 (2018). https://doi.org/10.4310/CMS.2018.V16.N6.A10

    Article  MathSciNet  MATH  Google Scholar 

  15. Arif, M.R., Hasan, N.: Vortex shedding suppression in mixed convective flow past a square cylinder subjected to large-scale heating using a non-Boussinesq model. Phys. Fluids 31, 023602 (2019). https://doi.org/10.1063/1.5079516

    Article  Google Scholar 

  16. Sanaullah, K., Arshad, M., Khan, A., Chughtai, I.R.: Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel. Thermophys. Aeromech. 22, 463–473 (2015). https://doi.org/10.1134/S0869864315040071

    Article  Google Scholar 

  17. Baddour, R.E., Zhang, H.: Density effect on round turbulent hypersaline fountain. J. Hydraul. Eng. 135, 57–59 (2009). https://doi.org/10.1061/(ASCE)0733-9429(2009)135:1(57)

    Article  Google Scholar 

  18. Mehaddi, R., Vauquelin, O., Candelier, F.: Experimental non-Boussinesq fountains. J. Fluid Mech. (2015). https://doi.org/10.1017/jfm.2015.617

    Article  MATH  Google Scholar 

  19. Liang, K.S.: Peter-Griffith, experimental and analytical study of direct contact condensation of steam in water. Nucl. Eng. Des. 147, 425–435 (1994). https://doi.org/10.1016/0029-5493(94)90225-9

    Article  Google Scholar 

  20. Chan, C.K., Lee, C.K.B.: A regime map for direct contact condensation. Int. J. Multiph. Flow. 8, 11–20 (1982). https://doi.org/10.1016/0301-9322(82)90003-9

    Article  Google Scholar 

  21. Lahey, R.T.: The thermal-hydraulics of a boiling water reactor, ANS, pp. 172–175 (1979)

  22. Shah, A., Chughtai, I.R., Inayat, M.H.: Numerical simulation of direct-contact condensation from a supersonic steam jet in subcooled water. Chin. J. Chem. Eng. 18, 577–587 (2010). https://doi.org/10.1016/S1004-9541(10)60261-3

    Article  Google Scholar 

  23. Wu, X.-Z., Yan, J.-J., Li, W.-J., Pan, D.-D., Liu, G.-Y.: Experimental investigation of over-expanded supersonic steam jet submerged in quiescent water. Exp. Therm. Fluid Sci. 34, 10–19 (2010). https://doi.org/10.1016/J.EXPTHERMFLUSCI.2009.08.006

    Article  Google Scholar 

  24. Wu, X.-Z., Yan, J.-J., Pan, D.-D., Liu, G.-Y., Li, W.-J.: Condensation regime diagram for supersonic/sonic steam jet in subcooled water. Nucl. Eng. Des. 239, 3142–3150 (2009). https://doi.org/10.1016/J.NUCENGDES.2009.08.010

    Article  Google Scholar 

  25. Qiu, B., Yan, J., Liu, J., Chong, D.: Experimental investigation on pressure oscillation frequency for submerged sonic/supersonic steam jet. Ann. Nucl. Energy 75, 388–394 (2015). https://doi.org/10.1016/j.anucene.2014.08.055

    Article  Google Scholar 

  26. Sanaullah, K., Khan, A., Takriff, M.S., Zen, H., Shah, A., Chughtai, I.R., Jamil, T., Fong, L.S., Haq, N.U.: Determining potential of subcooling to attenuate hydrodynamic instabilities for steam–water two phase flow. Int. J. Heat Mass Transf. 84, 178–197 (2015). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.12.073

    Article  Google Scholar 

  27. Van Wissen, R.J.E., Schreel, K.R.A.M., Van der Geld, C.W.M.: Particle image velocimetry measurements of a steam-driven confined turbulent water jet. J. Fluid Mech. 530, 353–368 (2005). https://doi.org/10.1017/S0022112005003769

    Article  MATH  Google Scholar 

  28. Choo, Y.J., Song, C.H.: PIV measurements of turbulent jet and pool mixing produced by a steam jet discharge in a subcooled water pool. Nucl. Eng. Des. (2010). https://doi.org/10.1016/j.nucengdes.2009.11.028

    Article  Google Scholar 

  29. Ishii, M., Paranjape, S.S., Kim, S., Sun, X.: Interfacial structures and interfacial area transport in downward two-phase bubbly flow. Int. J. Multiph. Flow 30, 779–801 (2004). https://doi.org/10.1016/j.ijmultiphaseflow.2004.04.009

    Article  MATH  Google Scholar 

  30. Tsuji, Y., Morikawa, Y.: LDV measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mech. 120, 385–409 (1982). https://doi.org/10.1017/S002211208200281X

    Article  Google Scholar 

  31. Velidandla, V., Putta, S., Roy, R.P.: Velocity field in isothermal turbulent bubbly gas-liquid flow through a pipe. Exp. Fluids 21, 347–356 (1996). https://doi.org/10.1007/BF00189055

    Article  Google Scholar 

  32. Khan, A., Takriff, M.S., Sanaullah, K., Zwawi, M., Algarni, M., Felemban, B.F., Bahadar, A., Shah, A., Rigit, A.R.H.: Periodic compression and cavitation induced shear between steam-water two-phase flows for bio-materials degradation. Int. J. Environ. Sci. Technol. 17, 1591–1626 (2020). https://doi.org/10.1007/s13762-019-02601-2

    Article  Google Scholar 

  33. Williamson, N., Srinarayana, N., Armfield, S.W., Mcbain, G.D., Lin, W.: Low-Reynolds-number fountain behaviour. J. Fluid Mech. 608, 297–317 (2008). https://doi.org/10.1017/S0022112008002310

    Article  MATH  Google Scholar 

  34. Burridge, H.C., Hunt, G.R.: The rise heights of low-and high-Froude-number turbulent axisymmetric fountains. J. Fluid Mech. 691, 392–416 (2012). https://doi.org/10.1017/jfm.2011.480

    Article  MathSciNet  MATH  Google Scholar 

  35. Thompson, C.M., Shure, L.: Image Processing Toolbox: For Use with MATLAB [user’s Guide], MathWorks (1995)

  36. Khan, A., Sanaullah, K., Takriff, M.S., Zen, H., Rigit, A.R.H., Shah, A., Chughtai, I.R., Jamil, T.: Pressure stresses generated due to supersonic steam jet induced hydrodynamic instabilities. Chem. Eng. Sci. 146, 44–63 (2016). https://doi.org/10.1016/J.CES.2016.01.056

    Article  Google Scholar 

  37. Wu, X.Z., Libchaber, A.: Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 2833–2839 (1991). https://doi.org/10.1103/PhysRevA.43.2833

    Article  Google Scholar 

  38. Philippe, P., Raufaste, C., Kurowski, P., Petitjeans, P.: Penetration of a negatively buoyant jet in a miscible liquid. Phys. Fluids 17, 1–10 (2005). https://doi.org/10.1063/1.1907735

    Article  MATH  Google Scholar 

  39. Durst, F., Zare, M.: Laser Doppler measurements in Two-Phase Flows. Afml, pp. 403–429 (1976). https://ui.adsabs.harvard.edu/abs/1976afml.proc..403D/abstract. Accessed 18 Feb 2021.

  40. Ohba, K., Yuhara, T., Matsuyama, H.: Simultaneous measurements of bubble and liquid velocities in two-phase bubbly flow using laser Doppler velocimeter. Bull. JSME 29, 2487–2493 (1986). https://doi.org/10.1299/jsme1958.29.2487

    Article  Google Scholar 

  41. Velidandla, V., Putta, S., Roy, R.P.: Turbulent velocity field in isothermal and heated liquid flow through a vertical annular channel. Int. J. Heat Mass Transf. 39, 3333–3346 (1996). https://doi.org/10.1016/0017-9310(96)00030-0

    Article  Google Scholar 

  42. Garnier, C., Lance, M., Marié, J.L.: Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction. Exp. Therm. Fluid Sci. 26, 811–815 (2002). https://doi.org/10.1016/S0894-1777(02)00198-X

    Article  Google Scholar 

  43. Turner, J.S.: Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26, 779–792 (1966). https://doi.org/10.1017/S0022112066001526

    Article  Google Scholar 

  44. Turner, J.S., Campbell, I.H.: Turbulent fountains in an open chamber. J. Fluid Mech. 212, 557–592 (1990). https://doi.org/10.1017/S0022112090002099

    Article  Google Scholar 

  45. Pantzlaff, L., Lueptow, R.M.: Transient positively and negatively buoyant turbulent round jets. Exp. Fluids 27, 117–125 (1999). https://doi.org/10.1007/s003480050336

    Article  Google Scholar 

  46. Seban, R.A., Behnia, M.M., Abreu, K.E.: Temperatures in a heated air jet discharged downward. Int. J. Heat Mass Transf. 21, 1453–1458 (1978). https://doi.org/10.1016/0017-9310(78)90001-7

    Article  Google Scholar 

  47. Cresswell, R.W., Szczepura, R.T.: Experimental investigation into a turbulent jet with negative buoyancy. Phys. Fluids A 5, 2865–2878 (1992). https://doi.org/10.1063/1.858749

    Article  Google Scholar 

  48. Papanicolaou, P.N., Kokkalis, T.J.: Vertical buoyancy preserving and non-preserving fountains, in a homogeneous calm ambient. Int. J. Heat Mass Transf. 51, 4109–4120 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.023

    Article  MATH  Google Scholar 

  49. Fraigneau, Y., Le Quere, P., Bouafia, M., Daube, O.: Non Boussinesq convection around a square cylinder within a rectangular cavity. In: International Heat Transfer Conference 13, Begell House (2006). https://doi.org/10.1615/ihtc13.p6.60

  50. Chu, V.H., Baines, W.D.: Entrainment by buoyant jet between confined walls. J. Hydraul. Eng. 115, 475–492 (1989). https://doi.org/10.1061/(ASCE)0733-9429(1989)115:4(475)

    Article  Google Scholar 

  51. A. Ezzamel, Spiral: Free and Confined Buoyant Flows (n.d.). https://spiral.imperial.ac.uk/handle/10044/1/9152. Accessed 16 Mar 2020

  52. Zhang, H., Baddour, R.E.: Maximum penetration of vertical round dense jets at small and large froude numbers. J. Hydraul. Eng. 124, 550–552 (1998). https://doi.org/10.1061/(asce)0733-9429(1998)124:5(550)

    Article  Google Scholar 

  53. Bloomfield, L.J., Kerr, R.C.: A theoretical model of a turbulent fountain. J. Fluid Mech. 424, 197–216 (2000). https://doi.org/10.1017/S0022112000001907

    Article  MATH  Google Scholar 

  54. Berman, N.S., Tan, H.: Two-component laser doppler velocimeter studies of submerged jets of dilute polymer solutions. AIChE J. 31, 208–215 (1985). https://doi.org/10.1002/aic.690310206

    Article  Google Scholar 

  55. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994). https://doi.org/10.1017/S002211209400323X

    Article  Google Scholar 

  56. Ashforth-Frost, S., Jambunathan, K.: Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 23, 155–162 (1996). https://doi.org/10.1016/0735-1933(96)00001-2

    Article  Google Scholar 

  57. Weisgraber, T.H., Liepmann, D.: Turbulent structure during transition to self-similarity in a round jet. Exp. Fluids 24, 210–224 (1998). https://doi.org/10.1007/s003480050168

    Article  Google Scholar 

  58. Webster, D.R., Roberts, P.J.W., Ra’ad, L.: Simultaneous DPTV/PLIF measurements of a turbulent jet. Exp. Fluids 30, 65–72 (2001). https://doi.org/10.1007/s003480000137

    Article  Google Scholar 

  59. Singh, G., Sundararajan, T., Bhaskaran, K.A.: Mixing and entrainment characteristics of circular and noncircular confined jets. J. Fluids Eng. Trans. ASME 125, 835–842 (2003). https://doi.org/10.1115/1.1595676

    Article  Google Scholar 

  60. Chen, D., Jirka, G.H.: Absolute and convective instabilities of plane turbulent wakes in a shallow water layer. J. Fluid Mech. 338, 157–172 (1997). https://doi.org/10.1017/S0022112097005041

    Article  MathSciNet  MATH  Google Scholar 

  61. Landel, J.R., Caulfield, C.P., Woods, A.W.: Meandering due to large eddies and the statistically self-similar dynamics of quasi-two-dimensional jets. J. Fluid Mech. 692, 347–368 (2012). https://doi.org/10.1017/jfm.2011.518

    Article  MATH  Google Scholar 

  62. Rocco, S., Woods, A.W.: Dispersion in two-dimensional turbulent buoyant plumes. J. Fluid Mech. 774, R1 (2015). https://doi.org/10.1017/jfm.2015.260

    Article  Google Scholar 

  63. Kaye, N.B.: Turbulent plumes in stratified environments: a review of recent work. Atmos. Ocean 46, 433–441 (2008). https://doi.org/10.3137/ao.460404

    Article  Google Scholar 

  64. Vaux, S., Mehaddi, R., Vauquelin, O., Candelier, F.: Upward versus downward non-Boussinesq turbulent fountains. J. Fluid Mech. 867, 374–391 (2019). https://doi.org/10.1017/jfm.2019.149

    Article  MathSciNet  MATH  Google Scholar 

  65. Carazzo, G., Kaminski, E., Tait, S.: On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J. Geophys. Res. 113, B09201 (2008). https://doi.org/10.1029/2007JB005458

    Article  Google Scholar 

  66. Ricciardi, L., Prévost, C., Bouilloux, L., Sestier-Carlin, R.: Experimental and numerical study of heavy gas dispersion in a ventilated room. J. Hazard. Mater. 152, 493–505 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.034

    Article  Google Scholar 

  67. Hermanson, J.C., Cetegen, B.M.: Shock-induced mixing of nonhomogeneous density turbulent jets. Phys. Fluids 12, 1210–1225 (2000). https://doi.org/10.1063/1.870371

    Article  MATH  Google Scholar 

  68. Kandakure, M.T., Patkar, V.C., Patwardhan, A.W.: Characteristics of turbulent confined jets. Chem. Eng. Process. Process Intensif. 47, 1234–1245 (2008). https://doi.org/10.1016/j.cep.2007.03.012

    Article  Google Scholar 

  69. Bhutada, S.R., Pangarkart, V.G.: Gas induction and hold-up characteristics of liquid jet loop reactors. Chem. Eng. Commun. 61, 239–258 (1987). https://doi.org/10.1080/00986448708912041

    Article  Google Scholar 

  70. Kandakure, M.T., Gaikar, V.G., Patwardhan, A.W.: Hydrodynamic aspects of ejectors. In: Chemical Engineering Science, Pergamon, pp. 6391–6402 (2005). https://doi.org/10.1016/j.ces.2005.04.055

  71. Hazel, P.: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51, 39–61 (1972). https://doi.org/10.1017/S0022112072001065

    Article  MATH  Google Scholar 

  72. Goldman, D., Jaluria, Y.: Effect of opposing buoyancy on the flow in free and wall jets. J. Fluid Mech. 166, 41–56 (1986). https://doi.org/10.1017/S0022112086000034

    Article  Google Scholar 

  73. Livescu, D., Ristorcelli, J.R., Gore, R.A., Dean, S.H., Cabot, W.H., Cook, A.W.: High-Reynolds number Rayleigh-Taylor turbulence. J. Turbul. (2009). https://doi.org/10.1080/14685240902870448

    Article  MathSciNet  MATH  Google Scholar 

  74. Lee, S.C., Harsha, P.T.: Use of turbulent kinetic energy in free mixing studies. AIAA J. 8, 1026–1032 (1970). https://doi.org/10.2514/3.5826

    Article  Google Scholar 

  75. Van Maele, K., Merci, B.: Application of two buoyancy-modified k-ε turbulence models to different types of buoyant plumes. Fire Saf. J. 41, 122–138 (2006). https://doi.org/10.1016/j.firesaf.2005.11.003

    Article  Google Scholar 

  76. Wu, X.Z., Yan, J.J., Shao, S.F., Cao, Y., Liu, J.P.: Experimental study on the condensation of supersonic steam jet submerged in quiescent subcooled water: Steam plume shape and heat transfer. Int. J. Multiph. Flow 33, 1296–1307 (2007). https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.004

    Article  Google Scholar 

  77. Kim, Y.-S., Park, J.-W., Song, C.-H.: Investigation of the stem-water direct contact condensation heat transfer coefficients using interfacial transport models. Int. Commun. Heat Mass Transf. 31, 397–408 (2004). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2004.02.010

    Article  Google Scholar 

  78. Chun, M.H., Kim, Y.S., Park, J.W.: An investigation of direct condensation of steam jet in subcooled water. Int. Commun. Heat Mass Transf. 23, 947–958 (1996). https://doi.org/10.1016/0735-1933(96)00077-2

    Article  Google Scholar 

  79. Tamanini, F.: The effect of buoyancy on the turbulence structure of vertical round jets. J. Heat Transf. 100, 659–664 (1978). https://doi.org/10.1115/1.3450873

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Russian Government and Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation for their support to this work through Act 211 Government of the Russian Federation, Contract No. 02. A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrasyab Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Sanaullah, K., Ghazwani, H.A.S. et al. Buoyancy effects on the supersonic steam jet injection into cocurrently and countercurrently flowing water. Arch Appl Mech 91, 3125–3149 (2021). https://doi.org/10.1007/s00419-021-01956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01956-8

Keywords

Navigation