Skip to main content
Log in

A numerical and experimental study on the divergence instability of an inverted cantilevered plate in wall effect

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We present a numerical and experimental study on the static-divergence instability of an inverted cantilevered plate in an uniform axial subsonic airflow. The flow is assumed ideal and is confined by a rigid channel wall. The inverted cantilevered plate, unlike a conventional one, is with a clamped trailing edge and a free leading edge. The equation of the plate motion is solved by the finite-difference method, and the linearized boundary element method is applied for the fluid equations. A new trigonometric form vortex panel model is developed for the solution of fluid force. An equivalent test method is developed for the divergence instability and is applied for the experimental study. The effect of the rigid wall is evaluated for various distances between the plate and the rigid channel wall, and the critical airflow velocity increases with the increase in the distance. The numerical calculations and predication show good agreement with the experimental results. When the distance is large enough, the numerical results are in accordance with the existing theory for an unconfined airflow. Finally, an approximated solution of the critical airflow velocity in terms of the distance is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Dover publications Inc., Mineola, NewYork (1955)

    MATH  Google Scholar 

  2. Dowell, E.H.: Aeroelasticity of Plates and Shells. Noordhoff International Publishing, Leyden (1975)

    MATH  Google Scholar 

  3. Paidoussis, M.P.: Fluid-Structure Interactions. Slender Structures and Axial Flow, vol. 2, first edn. Elsevier Academic Press, London (2004)

    Google Scholar 

  4. Watanabe, Y., Suzuki, S., Sugihara, M., Sueoka, Y.: A experimental study of paper flutter. J. Fluids Struct. 16, 529–542 (2002)

    Article  Google Scholar 

  5. Watanabe, Y., Isogai, K., Suzuki, S., Sugihara, M.: A theoretical study of paper flutter. J. Fluids Struct. 16, 543–560 (2002)

    Article  Google Scholar 

  6. de Breuker, R., Abdalla, M.M., Gurdal, Z.: Flutter of partially rigid cantilevered plates in axial flow. AIAA J 46, 936–946 (2008)

    Article  Google Scholar 

  7. Guo, C.Q., Paidoussis, M.P.: Stability of rectangular plates with free side-edges in two-dimensional inviscid channel flow. J. Appl. Mech. 67(1), 171–176 (2000)

    Article  Google Scholar 

  8. Lucey, A.D.: The excitation of waves on a flexible panel in a uniform flow. Philos. Trans. R. Soc. Lond. A 356, 2999–3039 (1998)

    Article  MathSciNet  Google Scholar 

  9. Zhang, J., Liu, N.S., Lu, X.Y.: Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 43–68 (2010)

    Article  MathSciNet  Google Scholar 

  10. Doare, O., Michelin, S.: Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency. J. Fluids Struct. 27(8), 1357–1375 (2011)

    Article  Google Scholar 

  11. Tang, D.M., Dowell, E.H.: Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate. J. Fluids Struct. 76, 14–36 (2018)

    Article  Google Scholar 

  12. Li, P., Yang, Y.R., Xu, W.: Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow. Nonlinear Dyn. 67, 1251–1267 (2012)

    MathSciNet  Google Scholar 

  13. Li, P., Zhang, D.C., Li, Z.W., et al.: Bifurcations and post-critical behaviors of a nonlinear curved plate in subsonic airflow. Arch. Appl. Mech. 89(2), 343–362 (2019)

    Article  Google Scholar 

  14. Li, P., Li, Z.W., Liu, S., et al.: Non-linear limit cycle flutter of a plate with Hertzian contact in axial flow. J. Fluids Struct. 81, 131–160 (2018)

    Article  Google Scholar 

  15. Li, P., Li, Z.W., Dai, C.D., et al.: On the non-linear dynmaics of a forced plate with boundary conditions correction in subsonic flow. Appl. Math. Model. 64, 15–46 (2018)

    Article  MathSciNet  Google Scholar 

  16. Dugundji, J., Dowell, E.H., Perkin, B.: Subsonic flutter of panels on continuous elastic foundations. AIAA J 5, 1146–1154 (1963)

    Article  Google Scholar 

  17. Kornecki, A., Dowell, E.H., O’brien, J.: On the aeroelastic instability of two-dimensional panels in uniform incompressible flow. J. Sound Vib. 47(2), 163–178 (1976)

    Article  Google Scholar 

  18. Eloy, C., Souilliez, C., Schouveiler, L.: Flutter of a rectangular plate. J. Fluids Struct. 23(6), 904–919 (2007)

    Article  Google Scholar 

  19. Tang, L.S., Paidoussis, M.P.: On the stabilities and the post-critical behavior of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib. 305, 97–115 (2007)

    Article  Google Scholar 

  20. Howell, R.M., Lucey, A.D.: Flutter of spring-mounted flexible plates in uniform flow. J. Fluids Struct. 59, 370–393 (2015)

    Article  Google Scholar 

  21. Connell, B.S.H., Yue, D.K.P.: Flapping dynamics of a flag in a uniform stream. J. Fluids Struct. 581, 33–67 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Gibbs, S.C., Wang, I., Dowell, E.H.: Theory and experiment for flutter of a rectangular plate with a fixed leading edge in three-dimensional axial flow. J. Fluids Struct. 34, 68–83 (2012)

    Article  Google Scholar 

  23. Alben, S., Shelley, M.: Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301 (2008)

    Article  Google Scholar 

  24. Michelin, S., Doare, O.: Flutter and limit cycle oscillations of two-dimensional panels in three-dimensional axial flow. J. Fluid Mech. 714, 489–504 (2013)

    Article  MathSciNet  Google Scholar 

  25. Gurugubelli, P.S., Jaiman, R.K.: Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J. Fluids Struct. 781, 657–694 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Tang, C., Liu, N.S., Lu, X.Y.: Dynamics of an inverted flexible plate in a uniform flow. Phys. Fluids 27, 073601 (2015)

    Article  Google Scholar 

  27. Cossé, D.M., Huertas C.C., Gharib M.: Flapping dynamics of an inverted flag. J. Fluids Mech. 736(R1) (2013)

  28. Sader, J.E., Cossé, J., Kim, D., et al.: Large-amplitude flapping of an inverted flag in a uniform steady flow-a vortex-induced vibration. J. Fluids Mech. 793, 524–555 (2016)

    Article  MathSciNet  Google Scholar 

  29. Sader, J.E., Huertas-Cerdeira, C., Gharib, M.: Stability of slender inverted flags and rods in uniform steady flow. J. Fluids Mech. 809, 873–894 (2016)

    Article  MathSciNet  Google Scholar 

  30. Bollay, W.: A non-linear wing theory and its applications to rectangular wings of small aspect ratio. Z. Angew. Math. Mech. 1, 21–35 (1939)

    Article  Google Scholar 

  31. Tavallaeinejad, M., Paidouss, M.P., Legrand, M.: Nonlinear static response of low-aspect-ratio inverted flags subjected to a steady flow. J. Fluids Struct. 83, 413–428 (2018)

    Article  Google Scholar 

  32. Ryu, J., Park, S.G., Kim, B., et al.: Flapping dynamics of an inverted flag in a uniform flow. J. Fluids Struct. 57, 159–169 (2015)

    Article  Google Scholar 

  33. Burke, M.A., Lucey, A.D., Howell, R.M., et al.: Stability of a flexible insert in one wall of an inviscid channel flow. J. Fluids Struct. 48, 435–450 (2014)

    Article  Google Scholar 

  34. Shoele, K., Mittal, R.: Flutter instability of a thin flexible plate in a channel. J. Fluid Mech. 786, 29–46 (2016)

    Article  MathSciNet  Google Scholar 

  35. Katz, J., Plotkin, A.: Low-Speed Aerodynamics, 2nd edn. Cambridge University Press, New York (2001)

    Book  Google Scholar 

  36. Balakrishnan, A.V.: Aeroelasticity: The continuum Theory. Springer, Berlin (2012)

    Book  Google Scholar 

  37. Serry, M., Tuffaha, A.: Static stability analysis of a thin plate with fixed trailing edge in axial subsonic flow: Possio integral equation approach. J. Appl. Math. Model. 63, 644–659 (2018)

    Article  MathSciNet  Google Scholar 

  38. Timoshenko, S., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, Inc., New York (1963)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos: 11302183; 11772273); the Applied and Basic Research Plans of Sichuan Province, China (Grant No: 2015JY0083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The influence coefficients of the normal flow-induced velocity at the control points are calculated as follows.

$$\begin{aligned} \begin{aligned}&\left( {{}^\mathrm{v}_\mathrm{{n}}{} \mathbf{{C}}_{\mathrm{p}/\mathrm{bw}/\mathrm{cw}}^\mathrm{{p}}}\right) _{i,j}= \left\{ \begin{aligned}&-\frac{{{\vec n_i}\cdot {\vec n_j}}}{{2\pi }}\int _{- \frac{{ \Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\frac{{\Delta }}{2} - \xi } \right) }{\Delta }\frac{{{{\xi _j} - \xi }}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi ,\quad \quad (i = 1)\\&{}\begin{aligned}&- \frac{{{\vec n_i}\cdot {\vec n_j}}}{{2\pi }}\int _{ -\frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\xi - \frac{{\Delta }}{2}} \right) }{\Delta }\frac{{{{\xi _j} - \xi }}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi \\&- \frac{{{\vec n_i}\cdot {\vec n_j}}}{{2\pi }}\int _{ - \frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\frac{{\Delta }}{2} - \xi } \right) }{\Delta }\frac{{ {{\xi _j} - \Delta - \xi }}}{{{{\left( {{\xi _j} - \Delta - \xi } \right) }^2} + \eta _j^2}}}d\xi \end{aligned},(i = 2\sim {N_\mathrm{p}}) \end{aligned}\right. \\&\left( {{}^\mathrm{v}_\mathrm{{n}}{} \mathbf{{C}}_{\mathrm{p}/\mathrm{bw}/\mathrm{cw}}^{\mathrm{bw}/\mathrm{cw}}}\right) _{i,j}=\frac{{{\vec n_i}\cdot {\vec n_j}}}{{2\pi }}\int _{\frac{{ - \Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{{{\xi _i-\xi }}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi ,(i >N_{p}) \end{aligned} \end{aligned}$$
(A.1)

The influence coefficients of the flow-induced potential at the control points of plate are calculated as follows.

$$\begin{aligned} \begin{aligned}&\left( {{}^{\varphi }{\mathbf{C}}_{\mathrm{p}}^{\mathrm{p}}}\right) _{i,j}= \left\{ \begin{aligned}&- \frac{{1}}{{2\pi }}\int _{-\frac{{ \Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{{\left( {\frac{{\Delta }}{2} - \xi } \right) }}{{\Delta }}{{\tan }^{ - 1}}\left( {\frac{{{\eta _j}}}{{{\xi _j} - \xi }}} \right) } d\xi ,\quad (i = 1)\\&{}\begin{aligned}&- {\frac{{ 1}}{{2\pi }}\int _{- \frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{{\left( {\xi + \frac{{\Delta }}{2}} \right) }}{{\Delta }}{{\tan }^{ - 1}}\left( {\frac{{{\eta _j}}}{{{\xi _j} - \xi }}} \right) } d\xi }\\&{ - \frac{{ 1}}{{2\pi }}\int _{ - \frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{{\left( {\frac{{\Delta }}{2} - \xi } \right) }}{{\Delta }}{{\tan }^{ - 1}}\left( {\frac{{{\eta _j}}}{{{\xi _j} - \Delta - \xi }}} \right) } \xi } \end{aligned},(i = 2\sim {N_\mathrm{p}}) \end{aligned}\right. \\&\left( {{}^{\varphi }{\mathbf{C}}_{\mathrm{p}}^{\mathrm{bw}/\mathrm{cw}}}\right) _{i,j}=\frac{1}{{4\pi }}\int _{ -\frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\ln \left[ {{{\left( {\xi - {\xi _j}} \right) }^2} + \eta _j^2} \right] } d\xi ,(i >N_{p}) \end{aligned} \end{aligned}$$
(A.2)

The influence coefficients of the tangential flow-induced velocity at the control points of plate are calculated as follows.

$$\begin{aligned} \begin{aligned}&\left( {{}^\mathrm{v}_{\mathrm{t}}{\mathbf{C}}_{\mathrm{p}}^{\mathrm{p}}}\right) _{i,j}= \left\{ \begin{aligned}&\frac{{ {1}}}{{2\pi }}\int _{- \frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\frac{{\Delta }}{2} - \xi } \right) }{\Delta }\frac{{\eta _j}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi ,\quad \quad (i = 1)\\&{}\begin{aligned}&\frac{{{1}}}{{2\pi }}\int _{ -\frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\xi - \frac{{\Delta }}{2}} \right) }{\Delta }\frac{{\eta _j}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi \\&\frac{{{1}}}{{2\pi }}\int _{ - \frac{{\Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{\left( {\frac{{\Delta }}{2} - \xi } \right) }{\Delta }\frac{{\eta _j}}{{{{\left( {{\xi _j} - \Delta - \xi } \right) }^2} + \eta _j^2}}}d\xi \end{aligned},(i = 2\sim {N_\mathrm{p}}) \end{aligned}\right. \\&\left( {{}^\mathrm{v}_{\mathrm{t}}{\mathbf{C}}_{\mathrm{p}}^{\mathrm{bw}/\mathrm{cw}}}\right) _{i,j}=\frac{{{1}}}{{2\pi }}\int _{- \frac{{ \Delta }}{2}}^{\frac{{\Delta }}{2}} {\frac{{{\eta _j}}}{{{{\left( {{\xi _j} - \xi } \right) }^2} + \eta _j^2}}} d\xi ,(i >N_{p}) \end{aligned} \end{aligned}$$
(A.3)

Note that the above equations are all derived by using the local coordinates as shown in Fig. 3a, and are calculated by using the suggested methods in Ref. [35].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liang, S., Li, P. et al. A numerical and experimental study on the divergence instability of an inverted cantilevered plate in wall effect. Arch Appl Mech 90, 1509–1528 (2020). https://doi.org/10.1007/s00419-020-01681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01681-8

Keywords

Navigation