Skip to main content
Log in

Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An extension mode piezoelectric fiber composite (PFC) actuator with cylindrically periodic microstructure is presented in this work especially for directional actuation of plane structures of revolution. The PFC actuator is designed in the form of a thin annular disk where the continuous piezoelectric fibers are periodically distributed along the circumferential direction to yield the directional actuation along the radial direction in the cylindrical principal material coordinate system. This kind of microstructure of the annular PFC actuator yields its radially varying electromechanical properties that are determined through the asymptotic segmentation of its (PFC) volume into a large number of microvolumes of different fiber volume fractions. The closed-form expressions for the effective electromechanical coefficients of the microvolumes are derived, and the corresponding verification is carried out through the numerical homogenization using finite element procedure. The results reveal the indicative magnitude of an effective piezoelectric coefficient (\(e_{31})\) that quantifies the directional actuation along the radial direction. But, the magnitude of this coefficient (\(e_{31})\) decreases indicatively with the increasing radius, and thus the annular PFC actuator is redesigned in a special manner for the improved magnitude of the coefficient (\(e_{31})\) at any radius. With these improved properties of the annular PFC actuator, its indicative actuation capability in control of vibration of an annular plate is observed, and thus this annular PFC actuator may be recommended for active control of plane structures of revolution specifically where the actuation along the radial direction is the major requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 38, 40–47 (1991)

    Article  Google Scholar 

  2. Hagood, N.W., Bent, A.A.: Development of piezoelectric fiber composites for structural actuation. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19–22, 1993. vol. 6, pp. 3625–3638 (1993)

  3. Bent, A.A., Hagood, N.W.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8, 903–919 (1997)

    Article  Google Scholar 

  4. High, J.W., Wilkie, W.K.: Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators. National Aeronautics and Space Administration. Langley Research Center, Hampton (2003)

    Google Scholar 

  5. Raja, S., Ikeda, T.: Concept and electro-elastic modeling of shear actuated fiber composite using micro-mechanics approach. J. Intell. Mater. Syst. Struct. 19, 1173–1183 (2008)

    Article  Google Scholar 

  6. Bowen, C.R., Perry, A., Kara, H., Mahon, S.W.: Analytical modelling of 3–3 piezoelectric composites. J. Eur. Ceram. Soc. 21, 1463–1467 (2001)

    Article  Google Scholar 

  7. Beckert, W., Kreher, W., Braue, W., Ante, M.: Effective properties of composites utilizing fibers with a piezoelectric coating. J. Eur. Ceram. Soc. 21, 1455–1458 (2001)

    Article  Google Scholar 

  8. Glushanin, S.V., Topolov, V.Y.: Predicting the piezoelectric response of novel anisotropic 1–2 type composites. Tech. Phys. Lett. 29, 316–319 (2003)

    Article  Google Scholar 

  9. Mallik, N., Ray, M.C.: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J. 41, 704–710 (2003)

    Article  Google Scholar 

  10. Shu, D., Della, C.N.: The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta materialia 56, 754–761 (2008)

    Article  Google Scholar 

  11. Rodríguez-Ramos, R., Guinovart-Díaz, R., Bravo-Castillero, J., Sabina, F.J., Berger, H., Kari, S., Gabbert, U.: Variational bounds for anisotropic elastic multiphase composites with different shapes of inclusions. Arch. Appl. Mech. 79, 695 (2009)

    Article  Google Scholar 

  12. Rodríguez-Ramos, R., Guinovart-Díaz, R., López-Realpozo, J.C., Bravo-Castillero, J., Sabina, F.J.: Influence of imperfect elastic contact condition on the antiplane effective properties of piezoelectric fibrous composites. Arch. Appl. Mech. 80, 377–388 (2010)

    Article  Google Scholar 

  13. Trindade, M.A., Benjeddou, A.: Finite element homogenization technique for the characterization of \(d15\) shear piezoelectric macro-fibre composites. Smart Mater. Struct. 20, 075012 (2011)

    Article  Google Scholar 

  14. Brenner, R., Bravo-Castillero, J., Mesejo Léon, D.: Investigation of the effective response of 2-1-2 piezoelectric composites. Procedia IUTAM 3, 292–300 (2012)

    Article  Google Scholar 

  15. Kalamkarov, A.L., Savi, M.A.: Micromechanical modeling and effective properties of the smart grid-reinforced composites. J. Braz. Soc. Mech. Sci. Eng. 34, 343–351 (2012)

    Article  Google Scholar 

  16. Sakthivel, M., Arockiarajan, A.: Thermo-electro-mechanical response of 1-3-2 piezoelectric composites: effect of fiber orientations. Acta Mechanica 223, 1353–1369 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kar-Gupta, R., Venkatesh, T.A.: Electromechanical response of 2–2 layered piezoelectric composites. Smart Mater. Struct. 22, 025035 (2013)

    Article  Google Scholar 

  18. Mi, X., Qin, L., Liao, Q., Wang, L.: Electromechanical coupling coefficient and acoustic impedance of 1-1-3 piezoelectric composites. Ceram. Int. 43, 7374–7377 (2017)

    Article  Google Scholar 

  19. Philen, M., Wang, K.W.: Shape control of circular plate with piezoelectric sheet actuators. Proc. SPIE 4327, 709–719 (2001)

    Article  Google Scholar 

  20. Spencer, W.J., Corbett, W.T., Dominguez, L.R., Shafer, B.D.: An electronically controlled piezoelectric insulin pump and valves. IEEE Trans. Sonics Ultrason. 25, 153–156 (1978)

    Article  Google Scholar 

  21. Dong, S., Du, X.H., Bouchilloux, P., Uchino, K.: Piezoelectric ring-morph actuators for valve application. J. Electroceram. 8, 155–161 (2002)

    Article  Google Scholar 

  22. Chee, C.Y.K., Tong, L., Steven, G.P.: A review on the modeling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intell. Mater. Syst. Struct. 9, 3–19 (1998)

    Article  Google Scholar 

  23. Cao, L., Mantell, S., Polla, D.: Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology. Sens. Actuator A Phys. 94, 117–125 (2001)

    Article  Google Scholar 

  24. Chen, X., Fox, C.H.J., McWilliam, S.: Optimization of a cantilever microswitch with piezoelectric actuation. J. Intell. Mater. Syst. Struct. 15, 823–834 (2004)

    Article  Google Scholar 

  25. Leniowska, L., Mazan, D.: MFC sensors and actuators in active vibration control of circular plate. Arch. Acoust. 40, 257–265 (2015)

    Article  Google Scholar 

  26. Lin, X., Huang, S., Zhou, K., Zhang, D.: The influence of structural parameters on the actuation performance of piezoelectric fiber composites. Mater. Des. 107, 123–129 (2016)

    Article  Google Scholar 

  27. Reiter, T., Dvorak, G.J., Tvergaard, V.: Micromechanical models for graded composite materials. J. Mech. Phys. Solids 45, 1281–1302 (1997)

    Article  Google Scholar 

  28. Cady, W.G.: Piezoelectricity, 1st edn. McGraw-Hill, Maidenbead (1946)

    Google Scholar 

  29. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach. Elsevier, Oxford (2013)

    Google Scholar 

  30. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Google Scholar 

  31. Deraemaeker, A., Nasser, H., Benjeddou, A., Preumont, A.: Mixing rules for the piezoelectric properties of macro fiber composites. J. Intell. Mater. Syst. Struct. 20, 1475–1482 (2009)

    Article  Google Scholar 

  32. Trindade, M.A., Benjeddou, A.: Finite element characterisation of multilayer d31 piezoelectric macro-fibre composites. Compos. Struct. 151, 47–57 (2016)

    Article  Google Scholar 

  33. Odegard, G.M.: Constitutive modeling of piezoelectric polymer pomposities. Acta materialia 52, 5315–5330 (2004)

    Article  Google Scholar 

  34. Singh, B., Chakraverty, S.: Transverse vibration of annular circular and elliptic plates using the characteristic orthogonal polynomials in two dimensions. J. Sound Vib. 162, 537–546 (1993)

    Article  Google Scholar 

  35. Dong, S., Uchino, K., Li, L., Viehland, D.: Analytical solutions for the transverse deflection of a piezoelectric circular axisymmetric unimorph actuator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1240–1248 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Tables 4, 5, 6.

Table 4 Effective elastic coefficients (\(\bar{C}_{ij}^{l}=ae^{br}+ce^{dr}\), in GPa) of the annular PFC actuator (the unit of r is m)
Table 5 Effective piezoelectric coefficients (\(\bar{e}_{ij}^{l} =ae^{br}+ce^{dr}\), in \(\hbox {C}/\hbox {m}^{2}\)) of the annular PFC actuator (the unit of r is m)
Table 6 Effective density (\(\bar{\rho }_{c}^{l} =ae^{br}+ce^{dr}\), in \(\hbox {kg}/\hbox {m}^{3}\)) of the annular PFC actuator (the unit of r is m)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, M.K., Panda, S. Electromechanical properties and actuation capability of an extension mode piezoelectric fiber composite actuator with cylindrically periodic microstructure. Arch Appl Mech 88, 2261–2281 (2018). https://doi.org/10.1007/s00419-018-1451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1451-1

Keywords

Navigation