Skip to main content
Log in

An accurate estimation of frequency response functions in output-only measurements

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Frequency response functions (FRFs) can be estimated only from responses of structures without knowledge of input forces. Mode shapes identified from operational modal analysis (OMA) methods are unscaled, and the unscaled mode shapes provide unscaled FRFs. In this paper, mass change and mass–stiffness methods are employed to construct FRFs from the response-only measurements. A numerical case study of a cantilever beam is investigated using the finite element method. It is shown that the mass–stiffness change method provides more accurate results compared to the mass change method in the low-frequency range. A laboratory-scale steel beam is also tested using an OMA method and conventional hammer test. The experimental results show better accuracy of the identified FRFs in the low-frequency range when the mass–stiffness method is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ewins, D.J.: Modal Testing; Theory, Practice and Application. Research Studies Press Ltd, London (2000)

    Google Scholar 

  2. Hanson, D.: Operational Modal Analysis and Model Updating with a Cyclostationary Input. University of New South Wales, Sydney (2006)

    Google Scholar 

  3. Brincker, R., Ventura, C., Andersen, P.: Why output-only modal testing is a desirable tool for a wide range of practical applications. In: Proceedings of the International Modal Analysis Conference (IMAC) XXI, Paper (2003)

  4. Parloo, E., Verboven, P., Guillaume, P., Van Overmeire, M.: Sensitivity-based operational mode shape normalisation. Mech. Syst. Signal Process. 16(5), 757–767 (2002)

    Article  Google Scholar 

  5. Coppotelli, G.: On the estimate of the FRFs from operational data. Mech. Syst. Signal Process. 23(2), 288–299 (2009)

    Article  Google Scholar 

  6. Khatibi, M., Ashory, M., Malekjafarian, A.: Scaling of mode shapes using mass-stiffness change method. In: Proceedings of the International Operational Modal Analysis Conference (IOMAC). Copenhagen, Denmark, pp. 699–706 (2009)

  7. Devriendt, C., De Troyer, T., De Sitter, G., Guillaume, P.: Transmissibility-based operational modal analysis for flight flutter testing using exogenous inputs. Shock Vib 19(5), 1071–1083 (2012). https://doi.org/10.3233/Sav-2012-0713

    Article  Google Scholar 

  8. Agneni, A., Coppotelli, G., Grappasonni, C.: Output-only analyses in environmental testing. In: International Operational Modal Analysis Conference, Istanbul, Turkey (2011)

  9. Mao, X., Luo, B., Li, B., Cai, H., Liu, H., Pen, F.: An approach for measuring the FRF of machine tool structure without knowing any input force. Int. J. Mach. Tools Manuf. 86, 62–67 (2014)

    Article  Google Scholar 

  10. Cai, H., Mao, X., Li, B., Luo, B.: Estimation of FRFs of machine tools in output-only modal analysis. Int. J. Adv. Manuf. Technol. 77(1–4), 117–130 (2015)

    Article  Google Scholar 

  11. Khatibi, M., Ashory, M., Malekjafarian, A., Brincker, R.: Mass-stiffness change method for scaling of operational mode shapes. Mech. Syst. Signal Process. 26, 34–59 (2012)

    Article  Google Scholar 

  12. Lopez-Aenlle, M., Fernandez, P., Brincker, R., Fernandez-Canteli, A.: Scaling-factor estimation using an optimized mass-change strategy. Mech. Syst. Signal Process. 24(8), 3061–3074 (2010)

    Article  Google Scholar 

  13. van Overschee, P., de Moor, B.L.: Subspace Identification for Linear Systems: Theory — Implementation — Applications. Springer (1996)

  14. Brincker, R., Zhang, L., Andersen, P.: Modal identification from ambient responses using frequency domain decomposition,# 293. In: Proceedings of IMAC-XVIII: A Conference on Structural Dynamics, p. 625 (2000)

  15. Brincker, R., Ventura, C., Andersen, P.: Damping estimation by frequency domain decomposition. IMAC XIX, Kissimmee 9, 72 (2001)

    Google Scholar 

  16. Brincker, R., Andersen, P.: Understanding stochastic subspace identification. In: Proceedings of the 24th IMAC, St. Louis, Missouri, pp. 279–311 (2006)

  17. Peeters, B.: System Identification and Damage Detection in Civil Engineering. Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, p. 233 (2000)

  18. Khatibi, M., Ashory, M., Albooyeh, A.: Determination of scaled mode shapes in response only modal analysis. In: Proceedings of 27th International Modal Analysis Conference (IMAC XXVII) (2009)

  19. Liu, G., Quek, S.: The Finite Element Method: A Practical Course. Department of Mechanical Engineering National University of Singapore Butterworth, Heinemann (2003)

    MATH  Google Scholar 

  20. MODPLAN.: Integrated Software for Structural Dynamics. ICATS Imperial College of Science, Technology and Medicine, University of London (1988–2000)

  21. Imamovic, N.: Validation of Large Structural Dynamics Models Using Modal Test Data. Imperial College of Science, Technology and Medicine, London (1998)

    Google Scholar 

  22. PULSE.: 8.0 edn. Brüel & Kjær, Sound and Vibration Measurement A/S (1996–2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khatibi.

Appendix

Appendix

The transformations from Eqs. (5), (6) are presented here.

By subtracting Eq. (5) from Eq. (4), the following relation is obtained:

$$\begin{aligned} \left[ M \right] \left( {\left\{ {\phi _1 } \right\} \omega _1^2 -\left\{ {\phi _2 } \right\} \omega _2^2 } \right) -\left[ {\Delta M} \right] \left\{ {\phi _2 } \right\} \omega _2^2 =\left[ K \right] \left( {\left\{ {\phi _1 } \right\} -\left\{ {\phi _2 } \right\} } \right) -\left[ {\Delta K} \right] \left\{ {\phi _2 } \right\} \end{aligned}$$
(15)

Considering small mass and stiffness changes, the mode shapes before and after modification change negligibly, i.e.

$$\begin{aligned} \left\{ {\phi _2 } \right\} \cong \left\{ {\phi _1 } \right\} =\left\{ \phi \right\} \end{aligned}$$
(16)

Considering Eqs. (16), (15) can be simplified as:

$$\begin{aligned} \left[ M \right] \left\{ \phi \right\} \left( {\omega _1^2 -\omega _2^2 } \right) =\left( {\left[ {\Delta M} \right] \omega _2^2 -\left[ {\Delta K} \right] } \right) \left\{ \phi \right\} \end{aligned}$$
(17)

Pre-multiplying by \(\left\{ \phi \right\} ^{t}\) and considering orthogonality of mode shapes, Eq. (17) becomes:

$$\begin{aligned} \left( {\omega _1^2 -\omega _2^2 } \right) =\left\{ \phi \right\} ^{t}\left( {\left[ {\Delta M} \right] \omega _2^2 -\left[ {\Delta K} \right] } \right) \left\{ \phi \right\} \end{aligned}$$
(18)

By substituting Eq. (2) into Eq. (18), the following equation is obtained:

$$\begin{aligned} \alpha =\sqrt{\frac{\left( {\omega _1^2 -\omega _2^2 } \right) }{\left\{ \psi \right\} ^{t}\left( {\left[ {\Delta M} \right] \omega _2^2 -\left[ {\Delta K} \right] } \right) \left\{ \psi \right\} }} \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnam, M.R., Khatibi, M.M. & Malekjafarian, A. An accurate estimation of frequency response functions in output-only measurements. Arch Appl Mech 88, 837–853 (2018). https://doi.org/10.1007/s00419-018-1345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1345-2

Keywords

Navigation