Skip to main content

Advertisement

Log in

A two-scale homogenization analysis of porous magneto-electric two-phase composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A computational homogenization analysis for the simulation of porous magneto-electric composite materials is presented. These materials combine two or more ferroic states with each other enabling a coupling between magnetization and electric polarization. This magneto-electric coupling finds application in sensor technology or data storage devices. Since most single-phase multiferroics show coupling at very low temperatures beyond technically relevant applications, two-phase composites, consisting of a ferroelectric and a ferromagnetic phases, are manufactured. They generate a strain-induced magneto-electric coupling at room temperature. The performance and reliability of these materials is influenced by defects or pores, which can arise during the manufacturing process. We analyze the impact of pores on the magnitude of the magneto-electric coupling coefficient. In order to determine the effective properties of the composite, a two-scale finite element (\(\hbox {FE}^2\)) homogenization approach is performed. It combines the macroscopic and microscopic scale by direct incorporation of the microscopic morphology. We derive the basic equations for the localization and the homogenization of the individual field variables and give an algorithmic expression for the effective tangent moduli. We discuss the influence of pores on the magneto-electric coupling in two-phase composites by analyzing numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Astrov, D.N.: The magnetoelectric effect in antiferromagnetics. Soviet Phys. JETP 38, 984–985 (1960)

    Google Scholar 

  2. Astrov, D.N.: Magnetoelectric effect in chromium oxide. J. Exp. Theor. Phys. 40, 1035–1041 (1961)

    Google Scholar 

  3. Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008). ISSN 1476-1122

    Article  Google Scholar 

  5. Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)

    Article  Google Scholar 

  6. Cheong, S.-W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007). ISSN 1476-1122

    Article  Google Scholar 

  7. Crottaz, O., Rivera, J.-P., Revaz, B., Schmid, H.: Magnetoelectric effect of \(\text{ Mn }_3\text{ B }_7\text{ O }_{13}{\text{ I }}\) boracite. Ferroelectrics 204, 125–133 (1997)

    Article  Google Scholar 

  8. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  Google Scholar 

  9. Eerenstein, W., Wiora, M., Prieto, J.L., Scott, J.F., Mathur, N.D.: Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6(5), 348–351 (2007)

    Article  Google Scholar 

  10. Etier, M., Shvartsman, V.V., Gao, Y., Landers, J., Wende, H., Lupascu, D.C.: Magnetoelectric effect in (0–3) \(\text{ CoFe }_2{\text{ O }}_4\)\(\text{ BaTiO }_3\) (20/80) composite ceramics prepared by the organosol route. Ferroelectrics 448, 77–85 (2013)

    Article  Google Scholar 

  11. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123–R152 (2005)

    Article  Google Scholar 

  12. Hill, R.: Elastic properties of reinforced solids—some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  MATH  Google Scholar 

  13. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  14. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interaction and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)

    Article  Google Scholar 

  15. Keip, M.-A.: Modeling of electro-mechanically coupled materials on multiple scales. PhD thesis, University of Duisburg-Essen (2012)

  16. Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)

    Article  Google Scholar 

  17. Kouznetsova, V., Geers, M.G.D., Brekelmans, W.A.M.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Eng. 54(8), 1235–1260 (2002)

    Article  MATH  Google Scholar 

  18. Kumar, M.M., Srinivas, A., Kumar, G.S., Suryanarayana, S.V.: Investigation of the magnetoelectric effect in \(\text{ BiFeO }_3\)\(\text{ BaTiO }_3\) solid solutions. J. Phys. Condens. Matter 11, 8131–8139 (1999)

    Article  Google Scholar 

  19. Kurzhöfer, I.: Mehrskalen-Modellierung polykristalliner Ferroelektrika basierend auf diskreten Orientierungsverteilungsfunktionen. PhD thesis, University of Duisburg-Essen (2007)

  20. Labusch, M., Etier, M., Lupascu, D.C., Schröder, J., Keip, M.-A.: Product properties of a two-phase magneto-electric composite: synthesis and numerical modeling. Comput. Mech. 54, 71–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Labusch, M., Schröder, J., Lupascu, D.C.: Multiscale homogenization of magneto-electric porous two-phase composites. In: Zingoni, A. (ed.) Insights and Innovations in Structural Engineering, Mechanics and Computation: Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016). Taylor & Francis Group, London (2016)

    Google Scholar 

  22. Lee, J.S., Boyd, J.G., Lagoudas, D.C.: Effective properties of three-phase electro–magneto-elastic composites. Int. J. Eng. Sci. 43(10), 790–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mandel, J., Dantu, P.: Conribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Annales des Ponts et Chaussées, Paris (1963)

    Google Scholar 

  24. Martin, L.W., Chu, Y.-H., Ramesh, R.: Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R: Rep. 68(4–6), 89–133 (2010). ISSN 0927-796X

    Article  Google Scholar 

  25. Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Eng. 172, 109–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miehe, C., Bayreuther, C.G.: On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int. J. Numer. Methods Eng. 71, 1135–1180 (2007)

    Article  MATH  Google Scholar 

  27. Miehe, C., Schotte, J., Schröder, J.: Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16(1–4), 372–382 (1999)

    Article  Google Scholar 

  28. Nan, C.-W.: Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  Google Scholar 

  29. Nan, C.-W., Liu, L., Cai, N., Zhai, J., Ye, Y., Lin, Y.H.: A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett. 81, 3831–3833 (2002)

    Article  Google Scholar 

  30. Nan, C.-W., Bichurin, M.I., Dong, Shuxiang, Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Article  Google Scholar 

  31. Naveed-Ul-Haq, M., Shvartsman, V.V., Trivedi, H., Salamon, S., Webers, S., Wende, H., Hagemann, U., Schröder, J., Lupascu, D.C.: Strong converse magnetoelectric effect in \(\text{(Ba, } \text{ Ca)(Zr, } \text{ Ti)O }_3\)\(\text{ NiFe }_2\text{ O }_4\) multiferroics: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305–313 (2018)

    Article  Google Scholar 

  32. Priya, S., Islam, R., Dong, S.X., Viehland, D.: Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 147–164 (2007)

    Google Scholar 

  33. Rado, G.T., Ferrari, J.M., Maisch, W.G.: Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed \(\text{ TbPO }_4\). Phys. Rev. B 29, 4041–4048 (1984)

    Article  Google Scholar 

  34. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007). ISSN 1476-1122

    Article  Google Scholar 

  35. Rivera, J.-P.: On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite. Ferroelectrics 161, 165–180 (1994a)

    Article  Google Scholar 

  36. Rivera, J.-P.: The linear magnetoelectric effect in \(\text{ licopo }_4\) revisited. Ferroelectrics 161, 147–164 (1994b)

    Article  Google Scholar 

  37. Rivera, J.-P., Schmid, H.: On the birefringence of magnetoelectric \(\text{ BiFeO }_3\). Ferroelectrics 204, 23–33 (1997)

    Article  Google Scholar 

  38. Ryu, J., Carazo, A Vázquez, Uchino, K., Kim, H.-E.: Piezoelectric and magnetoelectric properties of lead zirconate titanate/ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)

    Article  Google Scholar 

  39. Ryu, J., Priya, S., Uchino, K., Kim, H.E.: Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)

    Article  Google Scholar 

  40. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  41. Schmitz-Antoniak, C., Schmitz, D., Borisov, P., de Groot, F.M.F., Stienen, S., Warland, A., Krumme, B., Feyerherm, R., Dudzik, E., Kleemann, W., Wende, H.: Electric in-plane polarization in multiferroic \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) nanocomposite tuned by magnetic fields. Nat. Commun. 4, 1–8 (2013)

    Article  Google Scholar 

  42. Schröder, J.: Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Instabilitäten. Habilitation, Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart (2000)

  43. Schröder, J.: Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput. Mater. Sci. 46(3), 595–599 (2009)

    Article  Google Scholar 

  44. Schröder, J., Gross, D.: Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch. Appl. Mech. 73, 533–552 (2004)

    Article  MATH  Google Scholar 

  45. Schröder, J., Labusch, M., Keip, M.-A., Kiefer, B., Brands, D., Lupascu, D.C.: Computation of non-linear magneto-electric product properties of 0–3 composites. GAMM-Mitteilungen 38(1), 1–8 (2015)

    MathSciNet  Google Scholar 

  46. Schröder, J., Labusch, M., Keip, M.-A.: Algorithmic two-scale transition for magneto–electro-mechanically coupled problems - \(\text{ FE }^2\)-scheme: localization and homogenization. Comput. Methods Appl. Mech. Eng. 302, 253–280 (2016)

    Article  Google Scholar 

  47. Shvartsman, V.V., Alawneh, F., Borisov, P., Kozodaev, D., Lupascu, D.C.: Converse magnetoelectric effect in \(\text{ CoFe }_2\text{ O }_4\)-\(\text{ BaTiO }_3\) composites with a core-shell structure. Smart Mater. Struct. 20, 075006 (2011)

    Article  Google Scholar 

  48. Spaldin, N.A., Fiebig, M.: The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

    Article  Google Scholar 

  49. Srinivasan, G.: Magnetoelectric composites. Ann. Rev. Mater. Res. 40, 1–26 (2010)

    Article  Google Scholar 

  50. Van Den Boomgaard, J., Born, R.A.J.: A sintered magnetoelectric composite material \(\text{ BaTiO }_3\)\(\text{ Ni(Co,Mn) }\) \(\text{ Fe }_2\text{ O }_4\). J. Mater. Sci. 13, 1538–1548 (1978)

    Article  Google Scholar 

  51. Van den Boomgaard, J., Van Run, A.M.J.G., Van Suchtelen, J.: Magnetoelectricity in piezoelectric–magnetostrictive composites. Ferroelectrics 10, 295–298 (1976)

    Article  Google Scholar 

  52. Van den Boomgard, J., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Article  Google Scholar 

  53. Van Run, A.M.J.G., Terrell, D.R., Scholing, J.H.: An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1710–1714 (1974)

    Article  Google Scholar 

  54. van Suchtelen, J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  55. Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010)

    Article  Google Scholar 

  56. Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. Nat. Asia-Pac. Asia Mater. 2, 61–68 (2010)

    Google Scholar 

  57. Ye, Z.-G., Rivera, J.-P., Schmid, H., Haida, M., Kohn, K.: Magnetoelectric effect and magnetic torque of chromium chlorine boracite \(\text{ Cr }_3{\text{ B }}_7{\text{ O }}_{13}\text{ Cl }\). Ferroelectrics 161, 99–110 (1994)

    Article  Google Scholar 

  58. Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput. Methods Appl. Mech. Eng. 199, 3250–3269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zohdi, T.I.: Electromagnetic Properties of Multiphase Dielectrics. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the German Research Foundation (DFG) in the framework of the research unit 1509 “Ferroic Functional Materials—Multiscale Modeling and Experimental Characterization”, Projects SCHR 570/12-2 and LU 729/12-2. The authors sincerely acknowledge the image of a porous sample provided by Morad Etier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Labusch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labusch, M., Schröder, J. & Lupascu, D.C. A two-scale homogenization analysis of porous magneto-electric two-phase composites. Arch Appl Mech 89, 1123–1140 (2019). https://doi.org/10.1007/s00419-018-01500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-01500-1

Keywords

Navigation