Skip to main content
Log in

Nonlinear axial-lateral-torsional free vibrations analysis of Rayleigh rotating shaft

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear axial-lateral-torsional free vibration of the rotating shaft is analyzed by employing the Rayleigh beam theory. The effects of lateral, axial and torsional deformations, gyroscopic forces and rotary inertia are taken into account, but the shear deformations are neglected. In the new developed dynamic model, the nonlinearities are originated from the stretching of beam centerline, nonlinear curvature and twist and inertial terms which leads to the coupling between the axial, lateral and torsional deformations. The deformed configuration of the cross section of the beam is represented by the axial and lateral deformations, also the geometry of the beam in the deformed configuration is represented by Euler angles. A system of coupled nonlinear differential equations is obtained which is examined by the method of multiple scales and the nonlinear natural frequencies are determined. The accuracy of the solutions is inspected by comparing the free vibration response of the system with the numerical integration of the governing equations. The effect of the spin speed and radius-to-length ratio of the rotating shaft on the free vibrational behavior of the system is inspected. The study demonstrates the effect of axial-lateral-torsional coupling on the nonlinear free vibrations of the rotating shaft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area

E :

Young’s modulus of elasticity

I :

The second moment of area of the beam cross section

T :

Kinetic energy

L :

Length of the rotor

\(u_i ,i=1,2,3\) :

The components of displacement field along the xyz directions, respectively

N :

Number of mode shapes

R :

Radius of the shaft

e :

Extensional strain

t :

Time

xyz :

Variable coordinates

u :

Axial displacement of the shaft element

vw :

Transverse deflections of the shaft element

\(\psi ,\theta ,\varphi \) :

Euler angles

\(\tau \) :

Nondimensional time

\(\theta _i ,i=1,2,3\) :

Rotation angles

\(\omega _i , i=1, 2, 3\) :

Angular velocity components

\(\Pi \) :

Potential energy

\(\xi \) :

Nondimensional coordinate

\(\alpha , \lambda , \beta \) :

Nondimensional parameters

\(\delta \) :

Variational operator

\(\varepsilon \) :

Booking device (small parameter)

\(\varepsilon _{ij} \) :

Strain components

\(\rho _i \) :

Curvature components

\(\omega \) :

Frequency of the motion in the first scale

\(\omega _n \) :

Natural frequency

\(\Omega \) :

Rotating speed of the shaft

References

  1. Muszynska, A.: Rotordynamics. Taylor & Francis, Broken Sound Parkway (2005)

    Book  MATH  Google Scholar 

  2. Genta, G.: Dynamics of Rotating Systems. Springer, New York (2005)

    Book  MATH  Google Scholar 

  3. Rao, J.S.: History of Rotating Machinery Dynamics. Springer India, New Delhi (2011)

    Book  Google Scholar 

  4. Ishida, Y., Yamamoto, T.: Linear and Nonlinear Rotordynamics: a Modern Treatment with Applications. Wiley, Weinheim (2012)

    Book  Google Scholar 

  5. Eshleman, R.L., Eubanks, R.A.: On the critical speeds of a continuous rotor. Am. Soc. Mech. Eng. J. Eng. Ind. 91, 1180–1188 (1969)

    Google Scholar 

  6. Muszynska, A.: Whirl and whip—rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  7. Nelson, H.D., Mcvaugh, J.M.: The dynamics of rotor-bearing systems using finite elements. J. Eng. Ind. 98, 593–600 (1976)

    Article  Google Scholar 

  8. Koser, K., Pasin, F.: Torsional vibrations of the drive shafts of mechanisms. J. Sound Vib. 199, 559–565 (1997)

    Article  Google Scholar 

  9. Mihajlovic, N., Van de Wouw, N., Hendriks, M.P.M., Nijmeijer, H.: Friction-induced limit cycling in flexible rotor systems: an experimental drill-string set-up. Nonlinear Dyn. 46(3), 273–291 (2006)

    Article  MATH  Google Scholar 

  10. Verichev, N.N.: Chaotic torsional vibration of imbalanced shaft driven by a limited power supply. J. Sound Vib. 331, 384–393 (2012)

    Article  Google Scholar 

  11. Qin, Q.H., Mao, C.X.: Coupled torsional-flexural vibration of shaft systems in mechanical engineering—I: finite element model. Comput. Struct. 58(4), 835–843 (1996)

    Article  MathSciNet  Google Scholar 

  12. Mao, C.X., Qin, Q.H.: Coupled torsional-flexural vibration of shaft systems in mechanical engineering—II: FE-TM impedance coupling method. Comput. Struct. 58(4), 849 (1996)

    Article  MathSciNet  Google Scholar 

  13. Wu, J.S., Yang, I.H.: Computer method for torsion-and-flexure-coupled forced vibration of shafting system with damping. J. Sound Vib. 180(3), 417–435 (1995)

    Article  Google Scholar 

  14. Mohiuddin, M.A., Khulief, Y.A.: Coupled bending torsional vibration of rotors using finite element. J. Sound Vib. 223(2), 297–316 (1999)

    Article  MATH  Google Scholar 

  15. Al-Bedoor, B.O.: Modeling the coupled torsional and lateral vibrations of unbalanced rotors. Comput. Methods Appl. Mech. Eng. 190(45), 5999–6008 (2001)

    Article  MATH  Google Scholar 

  16. Hsieha, S.-C., Chenb, J.-H., Lee, A.-C.: A modified transfer matrix method for the coupling lateral and torsional vibrations of symmetric rotor-bearing systems. J. Sound Vib. 289, 294–333 (2006)

    Article  Google Scholar 

  17. Hsieha, S.-C., Chenb, J.-H., Lee, A.-C.: A modified transfer matrix method for the coupled lateral and torsional vibrations of asymmetric rotor-bearing systems. J. Sound Vib. 312, 563–571 (2008)

    Article  Google Scholar 

  18. Al-Bedoor, B.: Transient torsional and lateral vibration of unbalanced rotors with rotor-to-stator rub. J. Sound Vib. 229, 627–645 (2000)

    Article  Google Scholar 

  19. Patel, T., Darpe, A.: Coupled bending-torsional vibration analysis of rotor with rub and crack. J. Sound Vib. 326, 740–752 (2009)

    Article  Google Scholar 

  20. Khanlo, H.M., Ghayour, M., Ziaei-Rad, S.: Chaotic vibration analysis of rotating, flexible, continuous shaft-disk system with a rub-impact between the disk and the stator. Commun. Nonlinear Sci. Numer. Simul. 16, 566–582 (2011)

    Article  MATH  Google Scholar 

  21. Patel, T.H., Zuo, M.J., Zhao, X.: Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 69, 325–339 (2012)

    Article  Google Scholar 

  22. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound Vib. 117, 81–93 (1987)

    Article  Google Scholar 

  23. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269, 33–60 (2004)

    Article  Google Scholar 

  24. Rao, J.S., Shiau, T.N., Chang, J.R.: Theoretical analysis of lateral response due to torsional excitation of geared rotors. Mech. Mach. Theory 33, 761–783 (1998)

    Article  MATH  Google Scholar 

  25. Li, M., Hu, H.Y., Jiang, P.L., Yu, L.: Coupled axial-lateral-torsional dynamics of a rotor-bearing system geared by spur bevel gears. J. Sound Vib. 254(3), 427–446 (2002)

    Article  Google Scholar 

  26. Li, M., Hu, H.Y.: Dynamic analysis of a spiral bevel-geared rotor-bearing system. J. Sound Vib. 259(3), 605–624 (2003)

    Article  Google Scholar 

  27. Lee, A.S., Ha, J.W.: Prediction of maximum unbalance responses of a gear-coupled two-shaft rotor-bearing system. J. Sound Vib. 283, 507–523 (2005)

    Article  Google Scholar 

  28. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325, 609–628 (2009)

    Article  Google Scholar 

  29. Yuana, Z., Chua, F., Lina, Y.: External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances. J. Sound Vib. 299, 339–347 (2007)

    Article  Google Scholar 

  30. Huang, D.G.: Characteristics of torsional vibrations of a shaft with unbalance. J. Sound Vib. 308, 692–698 (2007)

    Article  Google Scholar 

  31. Ehrich, F.: Observations of nonlinear phenomena in rotordynamics. J. Syst. Des. Dyn. 2(3), 641–651 (2008)

    Google Scholar 

  32. Luczko, J.: A geometrically non-linear model of rotating shafts with internal resonance and self-excited vibration. J. Sound Vib. 255, 433–456 (2002)

    Article  Google Scholar 

  33. Hosseini, S.A.A., Khadem, S.E.: Free vibrations analysis of a rotating shaft with nonlinearities in curvature and inertia. Mech. Mach. Theory 44, 272–288 (2009)

    Article  MATH  Google Scholar 

  34. Shad, M.R., Michon, G., Berlioz, A.: Modeling and analysis of nonlinear rotordynamics due to higher order deformations in bending. Appl. Math. Model. 35, 2145–2159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hosseini, S.A.A., Zamanian, M.: Multiple scales solution for free vibrations of a rotating shaft with stretching nonlinearity. Sci. Iran. Trans. B Mech. Eng. 20, 131–140 (2013)

    Google Scholar 

  36. Mirtalaie, S.H., Hajabasi, M.A.: A new methodology for modeling and free vibrations analysis of rotating shaft based on the Timoshenko Beam theory. J. Vib. Acoust. 138, 021012-1 (2016)

    Article  Google Scholar 

  37. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  38. Bower, A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2009)

    Google Scholar 

  39. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  40. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mirtalaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirtalaie, S.H., Hajabasi, M.A. Nonlinear axial-lateral-torsional free vibrations analysis of Rayleigh rotating shaft. Arch Appl Mech 87, 1465–1494 (2017). https://doi.org/10.1007/s00419-017-1265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1265-6

Keywords

Navigation