Skip to main content
Log in

Vibration analysis of a circular cylinder closed with a hemi-spheroidal cap having a hole

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The natural frequencies and mode shapes of a circular cylindrical shell closed with a hemi-spheroidal dome are determined by the Ritz method using a three-dimensional (3-D) analysis instead of two-dimensional (2-D) thin shell theories or higher-order thick shell theories. The present analysis is based upon the circular cylindrical coordinates, while in the traditional shell analyses 3-D shell coordinates have been usually used. Using the Ritz method, the Legendre polynomials, which are mathematically orthonormal, are used as admissible functions instead of ordinary simple algebraic polynomials. Natural frequencies are presented for different boundary conditions. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the combined shell. The frequencies from the present 3-D method are compared with those from 2-D thin shell theories. The present method is applicable to very thick shells as well as thin shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Length of semimajor axis of the mid-surface of a hemi-ellipsoidal cap radius of the mid-surface of a circular cylindrical shell

\(A_{ij},B_{kl},C_{mn} \) :

Arbitrary coefficients

b :

Length of semiminor axis of the mid-surface of a hemi-ellipsoidal cap

\(D_{A }\) :

Hilbert space

DET :

Size of determinant

E :

Young’s modulus

H :

Uniform thickness of a joined shell

\(H^{*}\) :

\({\equiv } H/a\)

ijklmn :

Indices for double summation (nonnegative integer)

\(I_V, I_T \) :

Defined by Eqs. (21) and (22), respectively

IJKLMN :

Highest degrees of the Legendre polynomial terms

\({k}'\) :

\({\equiv } b/a\)

K :

Stiffness matrix

\(\hbox {K}_{\alpha \beta \hat{{\alpha }}\hat{{\beta }}} ,\hbox {M}_{\alpha \beta \hat{{\alpha }}\hat{{\beta }}} \) :

Submatrix of K and M \( (\alpha =i,k,m;\;\;\beta \hbox {=}j,l,n:\quad \hat{{\alpha }}=\hat{{i}},\hat{{k}},\hat{{m}};\;\;\hat{{\beta }}\hbox {=}\hat{{j}},\hat{{l}},\hat{{n}})\)

L :

Height of the mid-surface of a circular cylindrical shell

\(L^{*}\) :

\({\equiv } L/a\)

M :

Mass matrix

n :

Circumferential wave number (\(n=0,1,2,\ldots \))

\(P_n\) :

Legendre polynomial (\(n=0,1,2,\ldots \))

\(P_{\alpha \beta }\) :

\({\equiv } P_\alpha (\psi )P_\beta (\zeta )\; (\alpha =i,k,m,\;\beta =j,l,n)\)

r :

Radial coordinate

\(r,\theta , z\) :

Circular cylindrical coordinate system

\(R_i \) :

Radius of an axially circular hole of hemi-ellipsoidal cap

\(R_i^*\) :

\(R_i /a\)

s :

Mode number

t :

Time

T :

Kinetic energy

\(T_{\max }\) :

Maximum kinetic energy

TR :

Total number of the Legendre polynomial terms used in r or \(\psi \) direction

TZ :

Total number of the Legendre polynomial terms used in z or \(\zeta \) direction

\(u_r,u_z,u_\theta \) :

Displacements in the directions of \(r,z,\theta \), respectively

\(U_r, U_z, U_\theta \) :

Displacement functions of \(\psi \) and \( \zeta \)

V :

Strain energy

\(V_{\max }\) :

Maximum strain energy

x :

Vector of unknown coefficients

z :

Axial coordinate

\(z_{i,o} \) :

Coordinates of the inner and outer hemi-ellipsoidal surfaces for \(r\ge 0\), respectively

\(\alpha \) :

Arbitrary phase angle

\(\Gamma _1, \Gamma _2 \) :

Constants, defined by Eq. (24)

\(\delta _{ij} \) :

Kronecker delta

\(\varepsilon \) :

\({\equiv } \varepsilon _{rr} +\varepsilon _{zz} +\varepsilon _{\theta \theta }\)

\(\varepsilon _{ij} \) :

Tensorial strain

\( \zeta \) :

Non-dimensional axial coordinate (\({\equiv } z/L)\)

\( \zeta _{i,o}\) :

\({\equiv } z_{i,o} /L\) \(\upeta _{r,\theta ,z}\) functions of \(\psi \) and \(\zeta \) depending upon the geometric boundary conditions

\(\theta \) :

Circumferential coordinate

\(\kappa _i \) :

Functions defined by Eq. (23) (\(i=1,2,\ldots ,6\))

\(\lambda ,G\) :

Lamé parameters

\(\Lambda \) :

Domain of a joined shell

\(\upnu \) :

Poisson’s ratio

\(\pi \) :

3.1415926535...

\(\rho \) :

Mass density per unit volume

\(\sigma _{ij} \) :

Tensorial stress

\(\psi \) :

Non-dimensional radial coordinate \(\left( {{\equiv } r/a} \right) \)

\(\psi ,\theta ,\zeta \) :

Non-dimensional circular cylindrical coordinates

\(\omega \) :

Natural frequency

\(\Omega \) :

Square of non-dimensional frequency (\({\equiv } \omega ^{2}a^{2}\rho /G)\)

\(0^\mathrm{A}\) :

Circumferential wave number for axisymmetric modes

\(0^\mathrm{T}\) :

Circumferential wave number for torsional modes

2DS:

2-D thin shell theory

\({\bullet }\) :

Time derivative

, :

Spatial derivative

[n]:

The largest integer \({\le } n\)

\(\left\langle {f,g} \right\rangle \) :

\({\equiv } \eta (\psi ,\zeta ){\mathop {\iint }\limits _{\Lambda }} {f(\psi ,\zeta ) g(\psi ,\zeta )\; \psi d\zeta d\psi }\)

References

  1. Kouchakzadeh, M.A., Shakouri, M.: Free vibration analysis of joined cross-ply laminated conical shells. Int. J. Mech. Sci. 78, 118–125 (2014)

    Article  Google Scholar 

  2. Shang, X.: Exact solution for free vibration of a hermetic capsule. Mech. Res. Commun. 28, 283–288 (2001)

    Article  MATH  Google Scholar 

  3. Ma, X., Jin, G., Xiong, Y., Liu, Z.: Free and forced vibration analysis of coupled conical-cylindrical shells with arbitrary boundary conditions. Int. J. Mech. Sci. 88, 122–137 (2014)

    Article  Google Scholar 

  4. Shakouri, M., Kouchakzadeh, M.A.: Free vibration analysis of joined conical shells: analytical and experimental study. Thin Wall. Struct. 85, 350–358 (2014)

    Article  Google Scholar 

  5. Shakouri, M., Kouchakzadeh, M.A.: Stability analysis of joined isotropic conical shells under axial compression. Thin Wall. Struct. 72, 20–27 (2013)

    Article  Google Scholar 

  6. Kang, J.-H.: Three-dimensional vibration analysis of joined thick conical–cylindrical shells of revolutions with variable thickness. J. Sound Vib. 331, 4187–4198 (2012)

    Article  Google Scholar 

  7. Patel, B.P., Nath, Y., Shukla, K.K.: Nonlinear thermo-elastic buckling characteristics of cross-ply laminated joined conical–cylindrical shells. Int. J. Solids Struct. 43, 4810–4829 (2006)

    Article  MATH  Google Scholar 

  8. Hammel, J.: Free vibration of a cylindrical shell with a hemispherical head. In: 2nd International SMiRT Conference, Berlin, paper E4/6, pp. 1–12 (1973)

  9. Lee, Y.-S., Yang, M.-S., Kim, H.-S., Kim, J.-H.: A study on the free vibration of the joined cylindrical–spherical shell structures. Comput. Struct. 80, 2405–2414 (2002)

    Article  Google Scholar 

  10. Galletly, G.D., Mistry, J.: The free vibrations of cylindrical shells with various end closures. Nucl. Eng. Des. 30(2), 249–268 (1974)

    Article  Google Scholar 

  11. Kang, J.H.: Free vibrations of combined hemispherical-cylindrical shells of revolution with a top opening. Int. J. Strut. Stab. Dyn. 14, 1350023-1-14 (2014)

    MathSciNet  Google Scholar 

  12. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  13. Mikhlin, S.G.: Variational Methods in Mathematical Physics. Pergamon, Oxford (1964)

    MATH  Google Scholar 

  14. Mikhlin, S.G., Smolitskiy, K.L.: Approximate Methods for Solution of Differential and Integral Equations. American Elsevier Publishing Company Inc., New York (1967)

    Google Scholar 

  15. Beckmann, P.: Orthogonal Polynomials for Engineers and Physicists. Chap. 3. The Golem Press, Boulder (1973)

    MATH  Google Scholar 

  16. Lebedev, N.N.: Special Functions & Their Applications. Dover Publications, Mineola (1972)

    MATH  Google Scholar 

  17. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953)

    MATH  Google Scholar 

  18. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. International Publishers, Noordhoff (1958)

    MATH  Google Scholar 

  19. Leissa, A.W.: The historical bases of the Rayleigh and Ritz methods. J. Sound Vib. 287, 961–978 (2005)

    Article  Google Scholar 

  20. McGee, O.G., Leissa, A.W.: Three-dimensional free vibrations of thick skewed cantilever plates. J. Sound Vib. 144, 305–322 (1991). (Errata 149, 539–542 (1991))

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JH. Vibration analysis of a circular cylinder closed with a hemi-spheroidal cap having a hole. Arch Appl Mech 87, 183–199 (2017). https://doi.org/10.1007/s00419-016-1186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1186-9

Keywords

Navigation