Skip to main content
Log in

The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Different realizations of the modified Cam-Clay (MCC) models are reviewed. Several extensions of the MCC model are discussed, including models with kinematic hardening and bounding surface, the general plasticity model, extension of the MCC model to include finite strain, and different variants of the pressure hardening rules, including bi-modulus extension, hypoplastic, and the hyperelastic potential extensions. The associated flow rules coupled with different hardening equations are considered. The main attention is paid to the case of the infinitesimal strains. Numerical examples of kinematic deviatoric loadings for the considered model with linear elastic initial response are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aboim, C., Roth, W.: Bounding surface plasticity theory applied to cyclic loading of sand. In: International Symposium on Numerical Models in Geomechanics, pp. 65–72. (1982)

  2. Al Tabbaa, A., Wood, D.M.: An experimentally based bubble model for clay. In: Proceedings of the 3rd International Symposium on Numerical Models in Geomechanics (NUMOG III), pp. 90–99. Elsevier (1989)

  3. Alawaji, H., Runesson, K., Sture, S., Axelsson, K.: Implicit integration in soil plasticity under mixed control for drained and undrained response. Int. J. Numer. Anal. Methods Geomech. 13, 737–756 (1992)

    Article  MATH  Google Scholar 

  4. Andersen, K.H.: Bearing capacity under cyclic loading - offshore, along the coast, and on land. Can. Geotech J. 46, 513–535 (2009)

    Article  Google Scholar 

  5. Armero, F., Pérez-Foguet, A.: On the formulation of closest-point projection algorithms in elastoplasticity—Part I: the variational structure. Int. J. Numer. Methods Eng. 53, 297–329 (2002)

    Article  MATH  Google Scholar 

  6. Auricchio, F., Taylor, R.: A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes. Int. J. Plast. 15, 1359–1378 (1999)

    Article  MATH  Google Scholar 

  7. Auricchio, F., Taylor, R.L., Lubliner, J.: Computational plasticity. In: Owen, D.R.J., et al. (eds.) Application of a Return Map Algorithm to Plasticity Models, pp. 2229–2248. CIMNE, Barcelona (1992)

    Google Scholar 

  8. Bigoni, D., Hueckel, T.: Uniqueness and localization associative and non-associative elasto-plasticity. Int. J. Sol. Struct. 28, 197–213 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borja, R.I., Lee, S.R.: Cam-Clay plasticity. Part I: implicit integration of elasto-plastic constitutive relations. Comput. Methods Appl. Mech. Eng. 78, 49–72 (1990)

    Article  MATH  Google Scholar 

  10. Borja, R., Sama, K., Sanz, P.: On the numerical integration of three-invariant elastoplastic constitutive models. Comput. Methods Appl. Mech. Eng. 192, 1227–1258 (2003)

    Article  MATH  Google Scholar 

  11. Borja, R., Tamagnini, C.: Cam-Clay plasticity, Part III: extension of the infinitesimal model to include finite strains. Comput. Methods Appl. Mech. Eng. 155, 73–95 (1998)

    Article  MATH  Google Scholar 

  12. Buscarnera, G., Dattola, G., di Prisco, C.: Controllability, uniqueness and existence of the incremental response: a mathematical criterion for elastoplastic constitutive laws. Int. J. Sol. Struct. 48, 1867–1878 (2011)

    Article  Google Scholar 

  13. Callari, C., Auricchio, F., Sacco, E.: A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity. Int. J. Plast. 14, 1155–1187 (1998)

    Article  MATH  Google Scholar 

  14. Carter, J.P., Booker, J.R., Wroth, C.P.: Acritical state soil model for cyclic loading. In: Pande, G.N., Zienkiewicz, O.C. (eds.) Soil Mechanics—Transient and Cyclic Loading, pp. 219–252. Wiley, Chichester (1982)

    Google Scholar 

  15. Conti, R., Tamagnini, C., De Simone, A.: Critical softening in Cam-Clay plasticity: adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities. Comput. Methods Appl. Mech. Eng. 258, 118–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dafalias, Y.F., Herrmann, L.R.: A bounding surface soil plasticity model. In: Proceedings of International Symposium Soils under Cyclic Transient Loading, pp. 335–345. Swansea (1980)

  17. Dal Maso, G., De Simone, A.: Quasistatic evolution for cam-clay plasticity: examples of spatially homogeneous solutions. Math. Models Methods Appl. Sci. 19, 1643–1711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dal Maso, G., De Simone, A., Solombrino, F.: Quasistatic evolution for cam-clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. 40, 125–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dal Maso, G., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: the spatially homogeneous case. Netw. Heter. Media. 5, 97–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashiguchi, K.: On the linear relations of V-ln p and ln v-ln p for isotropic consolidation of soils. Int. J. Num. Anal. Methods Geomech. 19, 367–376 (1995)

    Article  MATH  Google Scholar 

  21. Hirai, H.: An elastoplastic constitutive model for cyclic behaviour of sands. Int. J. Num. Anal. Methods Geomech. 11(5), 503–520 (1987)

    Article  MATH  Google Scholar 

  22. Liu, J., Xiao, J.: Experimental study on the stability of railroad silt subgrade with increasing train speed. J. Geotech. Geoenviron. Eng. (ASCE) GT.1943-5606.0000282, 10.1061, 833–841 (2010)

  23. Mroz, Z.: On the description of anisotropic work hardening. J. Mech. Phys. Sol. 15(3), 163–175 (1967)

    Article  MathSciNet  Google Scholar 

  24. Ni, J., Indraratna, B., Geng, X., Carter, J., Chen Y.: Model of soft soils under cyclic loading. Int. J. Geomech. Eng. (ASCE) GM.1943-5622.0000411, 10.1061, 1–10 (2014)

  25. Papuga, J.: A survey on evaluating the fatigue limit under multiaxial loading. Int. J. Fatigue. 33, 153–165 (2011)

    Article  Google Scholar 

  26. Puppala, A.J., Mohammad, L.N., Allen, A.: Permanent deformation characterization of subgrade soils from RLT test. J. Mater. Civil Eng. 11, 274–282 (1999)

    Article  Google Scholar 

  27. Roscoe, K.H., Burland, J.B.: On the generalized stressstrain behavior of wet clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity, pp. 535–609. Cambridge University Press, Cambridge (1968)

    Google Scholar 

  28. Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Geotechnique. 8, 22–53 (1958)

    Article  Google Scholar 

  29. Roscoe, K.H., Schofield, A.N.: Mechanical behavior of an idealized \(\backslash \)wet clay. In: Proceedings of the 2nd European Conference Soil Mechanics and Foundation Engineering, vol. I, pp. 47–54. Wiesbaden (1963)

  30. Sangrey, D.A.: Cyclic loading of sands, silts and clays. Earthquake engineering and soil dynamics. Proc. ASCE Geotechnical Engineering Division Conference, pp. 836–851. (1978)

  31. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York City (1968)

    Google Scholar 

  32. Selig, E.T.: Soil failure modes in undrained cyclic loading. J. Geot. Eng. Div. 107, 539–551 (1981)

    Google Scholar 

  33. Shahin, M.A., Loh, R.B.H., Nikraz, H.R.: Some observations on the behaviour of soft clay under undrained cyclic loading. J. Geo Eng. TGS 6, 109–112 (2011)

    Google Scholar 

  34. Simo, J.C., Meschke, G.: A new class of algorithms for classical plasticity extended to finite strains. Appl. Geomater. Comput. Mech. 11, 253–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takahashi, M., Hight, D.W., Vaughan, P.R.: Effective stress changes observed during undrained cyclic triaxial tests on clay. In: Pande, G.N. Zienkiewicz, O. C. (eds.) Proceedings of the International Symposium on Soils Under Cyclic and Transient Loading, pp. 201–209. Balkema, Rotterdam, Netherlands(1980)

  36. Uzan, J.: Characterization of Granular Materials. Transportation Research Record 1022, TRB, pp. 52–59. National Research Council, Washington (1985)

    Google Scholar 

  37. Van Eekelen, S.J., Van den Berg, P.: The delft egg model, a constitutive model for clay. In: DIANA Computational Mechanics ’94, pp. 103–116. Springer (1994)

  38. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  39. Zhou, J., Gong, X.: Strain degradation of saturated clay under cyclic loading. Can. Geotech. J. 38, 208–212 (2001)

    Article  Google Scholar 

  40. Zienkiewicz, O., Mroz, Z.: Generalized plasticity formulation and applications to geomechanics. Mech. Eng. Mater. 655–679 (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, R.V., Dudchenko, A.V. & Kuznetsov, S.V. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading. Arch Appl Mech 86, 2021–2031 (2016). https://doi.org/10.1007/s00419-016-1169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1169-x

Keywords

Navigation