Skip to main content
Log in

Modeling of self-healing effects in polymeric composites

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Polymers and polymer composites are used in many engineering applications, but they can loose a high rate of stiffness and strength due to internal micro cracks/damages during their lifetime cycle. These damages are very hard to detect and nearly impossible to repair. To avoid failure due to such damages, a self-healing system is considered where microencapsulated healing agents and catalysts are embedded in the polymer matrix. For the numerical simulation of such a self-healing material, a thermodynamically consistent multiphase model, based on the Theory of Porous Media, is developed in this contribution. The different phases of the model are the solid matrix material with embedded catalysts, the liquid healing agents, the solid healed material and the gas phase, which represents the volume fraction of the micro cracks in the model. For the description of the healing mechanism, a mass exchange between the liquid healing agents and the solid healed material, in consideration of the change of the aggregate state, is introduced, which depends on the local concentration of catalysts in the polymer matrix. The applicability of the developed model is shown by means of numerical test simulations of a tapered double cantilever beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Zwaag, S.: Self-healing materials: An alternative approach to 20 centuries of materials science. Springer, Dordrecht (2007)

  2. Blaiszik B.J., Kramer S.L.B., Olugebefola S.C., Moore J.S., Sottos N.R., White S. R.: Self-healing polymers and composites. Ann. Rev. Mater. Res. 40, 179–211 (2010)

    Article  Google Scholar 

  3. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

  4. Grigoleit, S.: Überblick über Selbstheilende Materialien. Tech. rep., Frauenhofer-Institut für Naturwissenschaftlich-Technische Trendanalysen (INT) (2010)

  5. Gosh, S.K. (ed.): Self-healing materials. In: Fundamentals, design strategies, and applications, pp. 1–28. Wiley-VCH (2009)

  6. Hager, M.D., Greil, P., Leyens, C., van der Zwaag, S., Schubert, U.S.: Self-healing materials. Adv. Mater. 22, 542–45430 (2010)

  7. Yuan Y.C., Yin T., Rong M.Z., Zhang M.Q.: Self healing in polymers and polymer composites. Concept, realization and outlook: a review. Express Polym. Lett. 2, 238–250 (2008)

    Google Scholar 

  8. Beres W., Koul A.K., Thamburaj R.: A tapered double-cantilever-beam specimen designed for constant-K testing at elevated temperatures. J. Test. Eval. 25, 536–542 (1997)

    Article  Google Scholar 

  9. Brown E.N., Sottos N.R., White S.R.: Fracture testing of a self-healing polymer composite. Exp. Mech. 42, 372–379 (2002)

    Article  Google Scholar 

  10. Caruso, M.M., Blaiszik, B.J., White, S.R., Sottos, N.R., Moore, J.S.: Full recovery of fracture toughness using a nontoxic solvent based self-healing systems. Adv. Funct. Mater. 18, 1898–1904 (2008)

  11. Brown, E.N.: Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. J. Strain Anal. Eng. Design 46, 167–186 (2013)

  12. Raimondo M., Guadagno L.: Healing efficiency of epoxy-based materials for structural applications. Polym. Compos. 34, 1525–1532 (2013)

    Article  Google Scholar 

  13. Guadagno, L., Raimondo, M., Naddeo, C., Longo, P., Mariconda, A., Binder, W.H.: Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct. 23, 045001 (2014)

  14. Abu Al-Rub, R.K., Darabi, M.K., Little, D.N., Masad, E.A.: A micro-damage healing model that improves prediction of fatigue life in asphalt mixes . Int. J. Eng. Sci. 28, 966–990 (2010)

  15. Darabi, M.K., Abu Al-Rub, R.K., Little, D.N.: A continuum damage mechanics framework for modeling micro-damage healing. Int. J. Solids Struct. 49, 492–513 (2012)

  16. Bhasin, A., Bommavaran, R., Greenfield, M.L, Little, D.N: Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders. J. Mater. Civil Eng. 23, 485–492 (2001)

  17. Qui, J., van de Ven, M.F.C., Schlangen, E., Wu, S., Molenaar, A.A.A.: Cracking and healing modelling of asphalt mixtures. In: Scarpas, A., Kringos, N., Al-Qadi, I., Loizos, A. (eds.) 7th RILEM International Conference on Cracking in Pavements, pp. 1135–1144. Springer, Netherlands (2012)

  18. Kringos, N., Schmets, A., Scarpas, A., Pauli, T.: Towards an understanding of the self-healing capacity of asphaltic mixtures. Heron 56, 45–74 (2012)

  19. He, H., Guo, Z., Stroeven, P., Stroeven, M., Sluys, L.J.: Self-healing capacity of concrete-computer simulation study of unhydrated cement structure. Image Anal. Stereol. 26, 137–143 (2007)

  20. Homma D., Mihashi H., Nishiwaki T.: Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 7, 217–228 (2009)

    Article  Google Scholar 

  21. Huang H., Ye G.: Simulation of self-healing by further hydration in cementitious materials. Cem. Concr. Compos. 34, 460–467 (2012)

    Article  Google Scholar 

  22. Lv Z., Chen H.: Self-healing efficiency of unhydrated cement nuclei for dome-like crack mode in cementitious materials. Mater. Struct. 46, 1881–1892 (2013)

    Article  Google Scholar 

  23. Barbero E.J., Ford K.J.: Characterization of self-healing fiber-reinforced polymer-matrix composite with distributed damage. J. Adv. Mater. 39, 20–27 (2007)

    Google Scholar 

  24. Privman, V., Dementsov, A., Sokolov, I.: Modeling of self-healing polymer composites reinforced with nanoporous glass fibers. J. Comput. Theor. Nanosci. 4, 190–193 (2007)

  25. Sanada, K., Itaya, N., Shindo, Y.: Self-healing of interfacial debonding in fiber-reinforced polymers and effect of microstructure on strength recovery. Open Mech. Eng. J. 2, 97–103 (2008)

  26. Zemskov S.V., Jonkers H.M., Vermolen F.J.: Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials. Comput. Mater. Sci. 50, 3323–3333 (2011)

    Google Scholar 

  27. Schimmel, E.C., Remmers, J.J.C.: Development of a constitutive model for self-healing materials. Technical report, Delft Aerospace Computational Science (2006)

  28. Yagimli, B., Lion, A.: Experimental investigations and material modelling of curing processes under small deformations. Z. Angew. Math. Mech. 91, 342–359 (2011)

  29. Voyiadjis, G.Z., Shojaei, A., Li, G.: A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 27, 1025–1044 (2011)

  30. Wool R.P., O’Connor K.M.: A theory of crack healing in polymers. J. Appl. Phys. 52, 5953–5963 (1981)

    Article  Google Scholar 

  31. Maiti, S., Shankar, C., Geubelle, P.H., Kieffer, J.: Continuum and molecular-level modeling of fatigue crack retardation in self-healing polymers. J. Eng. Mater. Technol. 128, 595–602 (2006)

  32. Voyiadjis, G.Z., Shojaei, A., Li, G., Kattan, P.I.: A theory of anisotropic healing and damage mechanics of materials. Proc. R. Soc. Lond. A. 468, 163–183 (2012)

  33. Mergheim, J., Steinmann, P.: Phenomenological modelling of self-healing polymers based on integrated healing agents. Comput. Mech. (2013). doi:10.1007/s00466-013-0840-0

  34. Henson, G.M.: Engineering models for synthetic vascular materials with interphase mass, momentum and heat transfer. Int. J. Solids Struct. (2012)

  35. Henson, G.M.: In: Continuum modeling of synthetic microvascular materials. In: Proceedings of the 53rd AIAA, Structures dynamics and materials conference 2012

  36. Bowen R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  37. Bowen R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  38. de Boer, R.: Theory of Porous Media. Springer, Berlin (2000)

  39. de Boer, R.: Trends in continuum mechanics of porous media. In: Bear, J. (eds) Theory and Applications of Transport in Porous Media. Springer, Berlin (2005)

  40. Ehlers, W., Bluhm, J. (eds.): Porous Media. Springer, Berlin (2002)

  41. Bluhm, J.: Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers, W., Bluhm, J. (eds.): Porous Media, pp. 153–174. Springer, Berlin (2002)

  42. Ateshian, G.A., Ricken, T.: Multigenerational interstitial growth of biological tissues. Biomech. Model. Mechanobiol. 9, 689–702 (2010)

  43. Humphrey, J., Rajagopal, K.: A constrained mixture model for growth and remodelling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

  44. Rodriguez, E., Hoger, A., McCulloch, A.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

  45. Bluhm, J., Ricken, T., Blossfeld, W.M.: Dynamic phase transition border under freezing-thawing load in porous media: A multiphase description. Tech. Rep. 47, Institut of Mechanics, University of Duisburg-Essen, Germany (2009)

  46. Truesdell, C.: Rational Thermodynamics, 2nd edn. Springer, Berlin (1984)

  47. Bluhm, J., Ricken, T., Bloßeld, M.: Ice formation in porous media. In: Markert, B. (ed.) Advances in Extendet and Multifield Theories for Continua. Lecture Notes in Applied and Computational Mechanics, vol. 59, pp. 153–174. Springer, Berlin (2011)

  48. Simo, J.C., Pister, K.S.: Remarks on rate constitutive equations for finite deformation problems: Computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)

  49. Miehe, C.: Zur numerischen behandlung thermomechanischer Prozesse. Ph.D. thesis, Universität Hannover (1988)

  50. Kachanov, L.M.: Time of the rupture process under creep conditions. Izvestija Akademii Nauk Sojuza Sovetskich Socialisticeskich Republiki (SSSR) Otdelenie Techniceskich Nauk (Moskra) 8, 26–31 (1958)

  51. Miehe, C.: Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur. J. Mech. A Solids 14(5), 697–720 (1995)

  52. Balzani, D.: Polyconvex anisotropic energies and modeling of damage applied to arterial walls. Ph.D. thesis, Universität Duisburg-Essen (2006)

  53. Michalowski, R.L., Zhu, M.: Frost heave modelling using porosity rate function. Int. J. Numer. Anal. Methods Geomech. 30, 703–722 (2006)

  54. Taylor, R.L.: FEAP: A finite element analysis program, Version 8.2. Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Specht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, J., Specht, S. & Schröder, J. Modeling of self-healing effects in polymeric composites. Arch Appl Mech 85, 1469–1481 (2015). https://doi.org/10.1007/s00419-014-0946-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0946-7

Keywords

Navigation