Skip to main content
Log in

Dislocation technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under impact load

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this study, the transient response of multiple cracks subjected to shear impact load in a half-plane is investigated. At first, exact analytical solution for the transient response of Volterra-type dislocation in a half-plane is obtained by using the Cagniard-de Hoop method of Laplace inversion and is expressed in explicit forms. The distributed dislocation technique is used to construct integral equations for a half-plane weakened by multiple arbitrary cracks. These equations are of Cauchy singular type at the location of dislocation solved numerically to obtain the dislocation density on the cracks faces. The dislocation densities are employed to determine dynamic stress intensity factors history for multiple smooth cracks. Finally, several examples are presented to demonstrate the applicability of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maue A.W.: Die beuguhg elastischer wellen an der halbebene. ZAMM 33, 1–10 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  2. Loeber J.F., Sih G.C.: Diffraction of anti-plane shear waves by a finite crack. Acoust. Soc. Am. 44, 90–98 (1968)

    Article  MATH  Google Scholar 

  3. Thau S.A., Hwei L.T.: Transient stress intensity factor for a finite crack in an elastic solid caused by a dilatational wave. Int. J. Solids Struct. 7, 731–750 (1971)

    Article  MATH  Google Scholar 

  4. Sih G.C., Embley G.T.: Sudden twisting of a penny-shaped crack. ASME. Appl. Mech. 39, 395–400 (1972)

    Article  MATH  Google Scholar 

  5. Kuo A.Y.: Transient intensity factors of an interfacial crack between, two dissimilar anisotropic half-spaces. Appl. Mech. 51, 7176 (1984)

    Google Scholar 

  6. Ang W.T.: A crack in an anisotropic layered material under the action of impact loading. Appl. Mech. 55, 120–125 (1988)

    Article  MATH  Google Scholar 

  7. Babaei R., Lukasiewicz S.A.: Dynamic response of a crack functionally graded material between two dissimilar half-planes under anti-plane shear impact load. Eng. Fract. Mech. 60, 479–487 (1998)

    Article  Google Scholar 

  8. Wang B.L., Han J.C., Du S.Y.: Multiple crack problem in nonhomogeneous composite materials subjected to dynamic anti-plane shearing. Int. J. Fract. 100, 343–353 (1999)

    Article  Google Scholar 

  9. Chen Z.T., Karihaloo B.L.: Dynamic response of a cracked piezoelectric ceramic arbitrary electro-mechanical impact. Int. J. Solids Struct. 36, 5125–5133 (1999)

    Article  MATH  Google Scholar 

  10. Zhang Ch.: Transient elastodynamic anti-plane crack analysis of anisotropic solids. Int. J. Fract. 37, 6107–6130 (2000)

    MATH  Google Scholar 

  11. Wei P.J., Zhang S.Y., Wu Y.L., Li K.Y.: Dynamic SIF of interface crack problem between two dissimilar viscoelastic bodies under impact loading. Int. J. Fract. 105, 127–136 (2000)

    Article  Google Scholar 

  12. Zhao X., Meguid S.A., Liew K.M.: The transient response of bonded piezoelectric and elastic half-space with multiple interfacial collinear cracks. Acta. Mech. 159, 11–27 (2002)

    Article  MATH  Google Scholar 

  13. Zhang Ch., Sladek J., Sladek V.: Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. Int. J. Solids Struct. 40, 5251–5270 (2003)

    Article  MATH  Google Scholar 

  14. Zhao X.: The stress intensity factor history for an advancing crack in a transversely isotropic solid under 3-D loading. Int. J. Solids Struct. 40, 89–103 (2003)

    Article  MATH  Google Scholar 

  15. Feng W.J., Zou Z.Z.: Dynamic stress field for torsional impact of the penny-shaped crack in a transversely isotropic functionally graded strip. Int. J. Eng. Sci. 41, 1729–1739 (2003)

    Article  MATH  Google Scholar 

  16. Sladek J., Sladek V., Zhang C.Z.: Dynamic response of a crack in a functionally graded material under an anti-plane shear impact load. Eng. Mater. 251(252), 123–129 (2003)

    Google Scholar 

  17. Wang B.L., Mai Y.W.: A periodic array of cracks in functionally graded materials subjected to transient loading. Int. J. Eng. Sci. 44, 351–364 (2006)

    Article  Google Scholar 

  18. Itou S.: Transient dynamic stress intensity factors around two rectangular cracks in a nonhomogeneous interfacial layer between two dissimilar elastic half-spaces under impact load. Acta. Mech. 192, 89–110 (2007)

    Article  MATH  Google Scholar 

  19. Wu K.C., Chen J.C.: Transient analysis of collinear cracks under anti-plane dynamic loading. Eng. Proc. 10, 924–929 (2011)

    Article  Google Scholar 

  20. Monfared M.M., Ayatollahi M.: Elastodynamic analysis of a cracked orthotropic half-plane. Appl. Math. Model. 36, 2350–2359 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Weertman J.: Dislocation Based Fracture Mechanics. World Scientific, Singapore (1996)

    Book  Google Scholar 

  22. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1976)

    Google Scholar 

  23. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Method of Analysis and Solution of Crack Problems. Noordhoof, Leyden

  24. Liebowitz H.: Fracture Mechanics. Academic Press, New York (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ayatollahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejazi, A.A., Ayatollahi, M., Bagheri, R. et al. Dislocation technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under impact load. Arch Appl Mech 84, 95–107 (2014). https://doi.org/10.1007/s00419-013-0785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0785-y

Keywords

Navigation