Skip to main content
Log in

Optimum design of dynamic vibration absorbers for a beam, based on H and H 2 Optimization

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The solutions to H and H 2 optimization problems of a variant dynamic vibration absorber (DVA) applied to suppress vibration in beam structures are derived analytically. The H optimum parameters such as tuning frequency and damping ratios are expressed based on fixed-point theory to minimize the resonant vibration amplitude, as well as, the H 2 optimum parameters to minimize the total vibration energy or the mean square motion of a beam under random force excitation as analytical formulas. The reduction in maximum amplitude responses and mean square motion of a beam using the traditional vibration absorber is compared with the proposed dynamic absorber. Numerical results show the non-traditional DVA under optimum conditions has better vibration suppression performance on beam structures than the traditional design of DVA. Furthermore, comparing H and H 2 optimization procedures shows that for a beam under random force excitation, use of H2 optimum parameters resulting in smaller mean square motion than the other optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989, 3576–3580 (1911)

  2. Ormondroyd J., Den Hartog J.P.: The theory of the dynamic vibration absorber. ASME J. Appl. Mech. 50(7), 9–22 (1928)

    Google Scholar 

  3. Crandall S.H., Mark W.D.: Random Vibration in Mechanical Systems. Academic Press, New York (1963)

    Google Scholar 

  4. Asami T., Nishihara O.: Closed-form exact solution to H optimization of dynamic vibration absorbers (application to different transfer functions and damping systems). J. Vib. Acoust. 125, 398–405 (2003)

    Article  Google Scholar 

  5. Asami T., Nishihara O., Baz M.: Analytical solutions to H and H2 optimization of dynamic vibration absorbers attached to damped linear systems. J. Vib. Acoust. 124, 284–295 (2002)

    Article  Google Scholar 

  6. Zillettin M., Elliott S.J., Rustighi E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012)

    Article  Google Scholar 

  7. Tigli O.F.: Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads. J. Sound Vib. 331, 3035–3049 (2012)

    Article  Google Scholar 

  8. Ozer M.B., Royston T.J.: Extending Den Hartog’s vibration absorber technique to multi-degree-of-freedom systems. ASME J. Vib. Acoust. 127, 341–350 (2005)

    Article  Google Scholar 

  9. Rice H.J.: Design of multiple vibration absorber systems using modal data. J. Sound Vib. 160(2), 378–385 (1993)

    Article  MATH  Google Scholar 

  10. Hadi M., Arfiadi Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124, 1272–1280 (1998)

    Article  Google Scholar 

  11. Wong W.O., Tang S.L., Cheung Y.L.: Design of dynamic vibration absorber for vibration isolation of beams under point or distributed loads. J. Sound Vib. 301, 898–908 (2007)

    Article  Google Scholar 

  12. Cheung Y.L., Wong W.O.: H and H2 optimizations of dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009)

    Article  Google Scholar 

  13. Zuo L.: Effective, robust vibration control using series multiple tuned-mass dampers. J. Vib. Acoust. 131(3), 031003 (2009)

    Article  Google Scholar 

  14. Yamaguchi H., Harnpornchai N.: Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations. Earthq. Eng. Struct. Dyn. 22, 51–62 (1993)

    Article  Google Scholar 

  15. Zuo L., Nayfeh S.A.: Minimax optimization of multi-degree-of-freedom tuned-mass dampers. J. Sound Vib. 272, 893–908 (2004)

    Article  Google Scholar 

  16. Ren M.Z.: A variant design of the dynamic vibration absorber. J. Sound Vib. 245, 762–770 (2001)

    Article  Google Scholar 

  17. Liu K., Liu J.: The damped dynamic vibration absorbers: revisited and new results. J. Sound Vib. 284, 181–189 (2005)

    Google Scholar 

  18. Liu K.: Optimal design of damped dynamic vibration absorber for damped primary systems. CSME Trans. 34, 119–135 (2010)

    MATH  Google Scholar 

  19. Wong W.O., Cheung Y.L.: Optimal design of a damped dynamic vibration absorber for vibration control of structure excited by ground motion. Eng. Struct. 30, 282–286 (2008)

    Article  Google Scholar 

  20. Chtiba M.O., Choura S., Nayfeh A.H., El-Borgi S.: Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices. J. Sound Vib. 329, 261–276 (2010)

    Article  Google Scholar 

  21. Cheung Y.L., Wong W.O.: H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation. J. Sound Vib. 330, 1039–1044 (2011)

    Article  Google Scholar 

  22. Cheung Y.L., Wong W.O.: H-infinity optimization of variant design of the dynamic vibration absorber-revisited and new results. J. Sound Vib. 330, 3901–3912 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Noori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noori, B., Farshidianfar, A. Optimum design of dynamic vibration absorbers for a beam, based on H and H 2 Optimization. Arch Appl Mech 83, 1773–1787 (2013). https://doi.org/10.1007/s00419-013-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0777-y

Keywords

Navigation