Skip to main content
Log in

A nonlinear microbeam model based on strain gradient elasticity theory with surface energy

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A microscale nonlinear Bernoulli–Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton’s principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pei J., Tian F., Thundat T.: Glucose biosensor based on the microcantilever. Anal. Chem. 76, 292–297 (2004)

    Article  Google Scholar 

  2. Yun W., Peilong D., Zhenying X., Hua Y., Jiangping W., Jingjing W.: A constitutive model for thin sheet metal in micro-forming considering first order size effects. Mater. Des. 31, 1010–1014 (2010)

    Article  Google Scholar 

  3. Chan W.L., Fu M.W., Lu J.: The size effect on micro deformation behavior in micro-scale plastic deformation. Mater. Des. 32, 198–206 (2011)

    Article  Google Scholar 

  4. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  5. Ma H.M., Gao X.L., Reddy J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Koiter W.T.: Couple stresses in the theory of elasticity. Proc. K. Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MATH  Google Scholar 

  7. Anthoine A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  MATH  Google Scholar 

  8. Park S.K., Gao X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 6, 2355–2359 (2006)

    Article  Google Scholar 

  9. Kong S.L., Zhou S.J., Nie Z.F., Wang K.: The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  MATH  Google Scholar 

  10. Yang F., Chong A.C.M., Lam D.C.C.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  11. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Archive Appl. Mech. (2010) doi:10.1007/s00419-010-0452-5

  12. Asghari M., Ahmadian M.T., Kahrobaiyan M.H., Rahaeifard M.: On the size-dependent behavior of functionally graded microbeams. Mater. Des. 31, 2324–2329 (2010)

    Article  Google Scholar 

  13. Asghari M., Rahaeifard M., Kahrobaiyan M.H., Ahmadian M.T.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32, 1435–1443 (2011)

    Article  Google Scholar 

  14. Xia W., Wang L., Yin L.: Nonlinear non-classical microscale beams: Static bending, postbuckling and free vibration. Int. J. Eng. Sci. 48, 2044–2053 (2010)

    Article  MathSciNet  Google Scholar 

  15. Asghari M., Kahrobaiyan M.H., Ahmadian M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  Google Scholar 

  16. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Engng. Sci. (2011) doi:10.1016/j.ijengsci.2010.12.008

  17. Ke L.L., Wang Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  18. Vardoulakis I., Exadaktylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. de Phys. IV 8, 399–406 (1998)

    Google Scholar 

  19. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics Blackie. Chapman & Hall, London (1995)

    Google Scholar 

  20. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  21. Kong S.L., Zhou S.J., Nie Z.F., Wang K.: Static and dynamic analysis of microbeams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam D.C.C., Yang F., Chong A.C.M.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  23. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)

    Article  Google Scholar 

  24. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. (2011) doi:10.1016/j.ijengsci.2011.01.006

  25. Lazopoulos K.A., Lazopoulos A.K.: Bending and buckling of thin strain gradient elastic beams. Eur. J. Mech. A/Solids 29, 837–843 (2010)

    Article  Google Scholar 

  26. Casal, P.: La capillarite interne. Cahier du Groupe Francais d’Etudes de Rheologie C.N.R.S. VI, 31–37 (1961)

  27. Casal P.: Capillarite interne en mecanique. C.R. Acad. Sci. 256, 3820–3822 (1963)

    MATH  Google Scholar 

  28. Casal P.: La theorie du second gradient et la capillarite. C.R. Acad. Sci. 274, 1571–1574 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Vardoulakis I., Exadaktylos G., Aifantis E.: Gradient elasticity with surface energy: mode-III crack problem. Int. J. Solids Struct. 33, 4531–4559 (1996)

    Article  MATH  Google Scholar 

  30. Exadaktylos G.E., Vardoulakis I., Aifantis E.C.: Cracks in gradient elastic bodies with surface energy. Int. J. Fract. 79, 107–119 (1996)

    Article  Google Scholar 

  31. Exadaktylos G.E., Vardoulakis I.: Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics. Tectonophysics 335, 81–109 (2001)

    Article  Google Scholar 

  32. Mindlin R.D.: Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press (2004)

  34. Tsepoura K., Papargyri-Beskou S., Polyzos D., Beskos D.E.: Static and dynamic analysis of gradient elastic bars in tension. Arch. Appl. Mech. 72, 483–497 (2002)

    Article  MATH  Google Scholar 

  35. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  36. Reddy J.N.: Applied Functional Analysis and Variational Methods in Engineering. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  37. Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  38. Liao S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/ CRC Press, Boca Raton (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shojaa Ramezani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajabi, F., Ramezani, S. A nonlinear microbeam model based on strain gradient elasticity theory with surface energy. Arch Appl Mech 82, 363–376 (2012). https://doi.org/10.1007/s00419-011-0561-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0561-9

Keywords

Navigation