Skip to main content
Log in

Aging in the cortical bone: a constitutive law and its application

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

It is well known that the material behavior of human cortical bone changes from ductile to more brittle due to aging. This process is accompanied by a decrease of the maximum specific deformation energy. Numerous mechanical tests of specimens have shown a relationship between the mechanical behavior, age and microstructure, especially the porosity, mineralization and fraction of the secondary osteonal area. But up to now, this relationship is not explicitly considered in a constitutive law. Measured stress–strain curves, taken from the literature, from one-dimensional mechanical experiments in tension (McCalden et al. in J Bone Joint Surg Am 75(8):1193–1205, 1993) have been characterized by Young’s modulus, elastic, plastic and fracture energy, fracture stress and strain. The specimens have been harvested from the femora of 46 deceased individuals. Based on this data, we set up a system of equations taking into account the microstructure of the bone material by analogy to common procedures in fracture and damage mechanics. Solving this system for all measured experimental data leads to the determination of the independent damage parameters for each individual person. It turned out that some characteristic mechanical values and one independent damage parameter are statistically significant dependent on age and microstructure. We receive a constitutive law, which describes the mechanical behavior up to fracture by measurable parameters for the microstructure and the individual age and gender only. In turn, we calculate the individual tolerable load for bending, using a nonlinear stress–strain curve, and postulate an age-dependent fracture load for healthy bone by means of the statistical regression. Deviation from the standard is an indication for a bone disease in particular for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blain H., Chavassieux P., Portero-Muzy N., Bonnel F., Canovas F., Chammas M., Maury P., Delmas P.D.: Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43(5), 862–868 (2008)

    Article  Google Scholar 

  2. Bouxsein M.L.: Non-invasive measurements of bone strength: promise and peril. J. Musculoskelet. Neuronal Interact. 4(4), 404–405 (2004)

    Google Scholar 

  3. Burstein A.H., Reilly D.T., Martens M.: Aging of bone tissue—mechanical properties. J. Bone Joint Surg. Am. 58(1), 82–86 (1976)

    Google Scholar 

  4. Currey J.D.: Bones: Structure and Mechanics, 2nd edn. Princeton University Press, Princeton (2002)

    Google Scholar 

  5. Dong X.N., Guo X.E.: The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J. Biomech. 37(8), 1281–1287 (2004)

    Article  Google Scholar 

  6. Evans, F.G.: Mechanical Properties of Bone. American Lecture Series. Thomas, Springfield, (1973)

  7. Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik: Band 3: Kinetik, 10th edn. Springer, Springer- Lehrbuch, Berlin (2008)

  8. Gross D., Seelig T.: Bruchmechanik - mit einer Einführung in die Mikromechanik, 3 edn. Springer, Berlin (2001)

    Google Scholar 

  9. Hahn, H.G.: Bruchmechanik. B. G. Teubner, Stuttgart (1976)

  10. Hansen U., Zioupos P., Simpson R., Currey J.D., Hynd D.: The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 011011 (2008)

    Article  Google Scholar 

  11. Hiller L.P., Stover S.M., Gibson V.A., Gibeling J.C., Prater C.S., Hazelwood S.J., Yeh O.C., Martin R.B.: Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue. J. Orthop. Res. 21(3), 481–488 (2003)

    Article  Google Scholar 

  12. Hordon L.D., Peacock M.: The architecture of cancellous and cortical bone in femoral neck fracture. Bone Miner. 11(3), 335–345 (1990)

    Article  Google Scholar 

  13. Lindahl O., Lindgren A.G.: Cortical bone in man. 1. Variation of the amount and density with age and sex. Acta Orthop. Scand. 38(2), 133–140 (1967)

    Google Scholar 

  14. Lindahl O., Lindgren A.G.: Cortical bone in man. 2. Variation in tensile strength with age and sex. Acta Orthop. Scand. 38(2), 141–147 (1967)

    Google Scholar 

  15. Lindahl O., Lindgren G.H.: Cortical bone in man. 3. Variation of compressive strength with age and sex. Acta Orthop. Scand. 39(2), 129–135 (1968)

    Google Scholar 

  16. Martin R.B., Pickett J.C., Zinaich S.: Studies of skeletal remodeling in aging men. Clin. Orthop. Relat. Res. 149(149), 268–282 (1980)

    Google Scholar 

  17. Mayhew P.M., Thomas C.D., Clement J.G., Loveridge N., Beck T.J., Bonfield W., Burgoyne C.J., Reeve J.: Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366(9480), 129–135 (2005)

    Article  Google Scholar 

  18. McCalden R.W., McGeough J.A., Barker M.B., Court-Brown C.M.: Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J. Bone Joint Surg. Am. 75(8), 1193–1205 (1993)

    Google Scholar 

  19. Norman T.L., Yeni Y.N., Brown C.U., Wang Z.: Influence of microdamage on fracture toughness of the human femur and tibia - Effects of strain rate, microstructure and density. Bone 23(3), 303–306 (1998)

    Article  Google Scholar 

  20. Ott I.: Ein Materialgesetz zur Beschreibung des Alterungsprozesses kortikaler Knochen. Der Andere Verlag, Tönning (2007)

    Google Scholar 

  21. Parfitt A.M.: Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif. Tissue Int. 36(1), 123–128 (1984)

    Article  Google Scholar 

  22. Rho J.Y., Kuhn-Spearing L., Zioupos P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998)

    Article  Google Scholar 

  23. Rho J.Y., Zioupos P., Currey J.D., Pharr G.M.: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J. Biomech. 35, 189–198 (2002)

    Article  Google Scholar 

  24. Riggs B.L., Melton L.J., Robb R.A., Camp J.J., Atkinson E.J., Peterson J.M., Rouleau P.A., McCollough C.H., Bouxsein M.L., Khosla S.: Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19(12), 1945–1954 (2004)

    Article  Google Scholar 

  25. Ruff C.B., Hayes W.C.: Sex differences in age-related remodeling of the femur and tibia. J. Orthop. Res. 6(6), 886–896 (1988)

    Article  Google Scholar 

  26. Schaffler M.B., Choi K., Milgrom C.: Aging and matrix microdamage accumulation in human compact bone. Bone 17(6), 521–525 (1995)

    Article  Google Scholar 

  27. Turner C.H., Rho J., Takano Y., Tsui T.Y., Pharr G.M.: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J. Biomech. 32(4), 437–441 (1999)

    Article  Google Scholar 

  28. Vashishth D., Tanner K.E., Bonfield W.: Contribution, development and morphology of microcracking in cortical bone during crack propagation. J. Biomech. 33(9), 1169–1174 (2000)

    Article  Google Scholar 

  29. Zioupos P.: Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J. Biomater. Appl. 15(3), 187–229 (2001)

    Article  Google Scholar 

  30. Zioupos P., Currey J.D.: Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22(1), 57–66 (1998)

    Article  Google Scholar 

  31. Zioupos P., Currey J.: The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29, 978–986 (1994)

    Article  Google Scholar 

  32. Zioupos P.: Accumulation of in vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J. Microscopy 201(2), 270–278 (2001)

    Article  MathSciNet  Google Scholar 

  33. Zysset P.K., Guo X.E., Hoffler C.E., Moore K.E., Goldstein S.A.: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32(10), 1005–1012 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, I., Kienzler, R. & Schröder, R. Aging in the cortical bone: a constitutive law and its application. Arch Appl Mech 80, 527–541 (2010). https://doi.org/10.1007/s00419-009-0381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0381-3

Keywords

Navigation