Skip to main content
Log in

Micromechanical modelling of skeletal muscles: from the single fibre to the whole muscle

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2011

Abstract

The structure of a skeletal muscle is dominated by its hierarchical architecture in which thousands of muscle fibres are arranged within a connective tissue network. The single muscle fibre consists of many force-producing cells, known as sarcomeres, which contribute to the contraction of the whole muscle. There are a lot of questions concerning the optimisation of muscle strength and agility. To answer these questions, numerical testing tools, e.g. in the form of finite element models can be an adequate alternative to standard experimental investigations. The present approach is crucially based on the use of the finite element method. The material behaviour of the muscle is additively split into a so-called active and a passive part. To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived. Embedded into these unit cells are non-linear truss elements which represent bundles of muscle fibres. Besides the representation of the material model, this contribution focuses on the application to anatomically based 3D problems, as the animal soleus muscle of the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariano M.A., Armstrong R.B., Edgerton V.R.: Hindlimb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21(1), 51–55 (1973)

    Google Scholar 

  2. Blemker S.S., Pinsky P.M., Delp S.L.: A 3d model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38, 657–665 (2005)

    Article  Google Scholar 

  3. Blix M.: Die Länge und die Spannung des Muskels. Skand. Arch. Physiol. 3, 295–318 (1894)

    Google Scholar 

  4. Böl M., Reese S.: Finite element modelling of rubber-like polymers based on chain statistics. Int. J. Solids Struct. 43, 2–26 (2006)

    Article  MATH  Google Scholar 

  5. Böl M., Reese S.: A new approach for the simulation of skeletal muscles using the tool of statistical mechanics. Mater. Sci. Eng. Technol. 38, 955–964 (2007)

    Google Scholar 

  6. Böl M., Reese S.: Micromechanical modelling of skeletal muscles based on the finite element method. Comput. Methods Biomech. Biomed. Eng. 11, 489–504 (2008)

    Article  Google Scholar 

  7. Böl, M., Reese, S., Parker, K.K. Kuhl, E.: Computational modeling of muscular thin films for cardiac repair. Comput. Mech. http://www.springerlink.com/content/q83035412861087q/ (2008)

  8. Edström L., Larsson L.: Effects of age on contractile and enzyme-histochemical properties of fast- and slow-twitch single motor units in the rat. J. Physiol. 392, 129–145 (1987)

    Google Scholar 

  9. Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissue. Springer, New York (1993)

    Google Scholar 

  10. Gordon A.M., Huxley A.F., Julian F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184, 170–192 (1966)

    Google Scholar 

  11. Hill A.V.: The maximum work and mechanical efficiency of human muscles, and their most economical speed. J. Physiol. 56, 19–41 (1922)

    Google Scholar 

  12. Hill A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938)

    Article  Google Scholar 

  13. Huxley A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)

    Google Scholar 

  14. Kernell D., Eerbeek O., Verhey B.A.: Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Exp. Brain Res. 50, 220–227 (1983)

    Google Scholar 

  15. Magnusson S.P., Hansen P., Aagaard P., Brønd J., Dyhre-Poulsen P., Bojsen-Moller J.: Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185–195 (2003)

    Article  Google Scholar 

  16. Pette D., Staron R.S.: Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116, 1–47 (1990)

    Google Scholar 

  17. Schmalbruch H.: Skeletal Muscle. Springer, Berlin (1985)

    Google Scholar 

  18. Stark, H.: Die 3D-Architektur der Muskelfaszikel in ausgewählten Muskeln und ihre Relevanz zur Kraftentwicklung. Ph.D. thesis, Friedrich-Schiller-Universität Jena (2008)

  19. Staron R.S., Kraemer W.J., Hikida R.S., Fry A.C., Murray J.D., Campos G.E.R.: Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem. Cell Biol. 111, 117–123 (1999)

    Article  Google Scholar 

  20. Taylor A.M., Steege J.W., Enoka R.M.: Motor-unit synchronization alters spike-triggered average force in simulated contractions. J. Neurophysiol. 88, 265–276 (2002)

    Google Scholar 

  21. Tsui C.P., Tang C.Y., Leung C.P., Cheng K.W., Ng Y.F., Chow D.H.K., Li C.K.: Active finite element analysis of skeletal muscle-tendon complex during isometric, shortening and lengthening contraction. Biomed. Mater. Eng. 14, 271–279 (2004)

    Google Scholar 

  22. van Leeuwen J.L.: Muscle function in locomotion. In: Alexander, R.M. (eds) Mechanics of Animal Locomotion, pp. 191–249. Springer, Berlin (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Böl.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00419-011-0575-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böl, M. Micromechanical modelling of skeletal muscles: from the single fibre to the whole muscle. Arch Appl Mech 80, 557–567 (2010). https://doi.org/10.1007/s00419-009-0378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0378-y

Keywords

Navigation