Skip to main content
Log in

Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

For simulations of boundary value problems using anisotropic hyperelastic constitutive equations at moderate strains anisotropic polyconvex energies can preferably be used because the existence of minimizers is then automatically guaranteed. For this reason, we investigate the adaptability of anisotropic polyconvex energy functions for the phenomenological description of real anisotropic material responses. Here we focus on the fitting of the fourth-order tangent moduli near the reference state to some experimental data of anisotropic materials. We use anisotropic energies which can be generated for arbitrary anisotropy classes and automatically satisfy the polyconvexity condition. In this paper we consider orthotropic and monoclinic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M.: Convexity conditions and existence theorems in non–linear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  2. Ball J.M.: “Some open problems in elasticity”, in Geometry, Mechanics and Dynamics, pp. 3–59. Springer, New York (2002)

    Google Scholar 

  3. Balzani, D.: “Polyconvex anisotropic energies and modeling of damage applied to arterial walls”, Bericht Nr.2 (2006). Ph.D. thesis, Institut für Mechanik, Fachbereich Bauwissenschaften, Universität Duisburg-Essen (2006)

  4. Balzani D., Neff P., Schröder J., Holzapfel G.A.: A polyconvex framework for soft biological tissues. Adjustment to experimental data. Int. J. Solids Struct. 43(20), 6052–6070 (2006)

    Article  MATH  Google Scholar 

  5. Balzani D., Gruttmann F., Schröder J.: Analysis of thin shells using anisotropic polyconvex energy densities. Comput. Methods Appl. Mech. Eng. 197, 1015–1032 (2008)

    Article  MATH  Google Scholar 

  6. Böhlke, T., Brüggemann, C.: “Graphical representation of the generalized Hookes law”, Technische Mechanik, Band 21, Heft 2, pp. 145–158 (2001)

  7. Hartmann S., Neff P.: Polyconvexity of generalized polynomial type hyperelastic strain energy functions for near incompressibility. Int. J. Solids Struct. 40, 2767–2791 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Itskov M., Aksel N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kambouchev N., Fernandez J., Radovitzky R.: A polyconvex model for materials with cubic symmetry. Model. Simul. Mater. Sci. Eng. 15, 451–467 (2007)

    Article  Google Scholar 

  10. Markert B., Ehlers W., Karajan N.: A general polyconvex strain-energy function for fiber-reinforced materials. Proc. Appl. Math. Mech. 5, 245–246 (2005)

    Article  Google Scholar 

  11. Mielke A.: Necessary and sufficient conditions for polyconvexity of isotropic functions. J. Convex Anal. 12, 291–314 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Schröder J., Neff P.: On the construction of polyconvex anisotropic free energy functions. In: Miehe, C. (ed.) Proceedings of the IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, pp. 171–180. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  13. Schröder J., Neff P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Struct. 40, 401–445 (2003)

    Article  MATH  Google Scholar 

  14. Schröder J., Neff P., Balzani D.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42/15, 4352–4371 (2005)

    Article  Google Scholar 

  15. Schröder J., Neff P., Ebbing V.: Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors. J. Mech. Phys. Solids 56(12), 3486–3506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schwefel H.P.: Evolution and Optimum Seeking. Wiley, New York (1996)

    Google Scholar 

  17. Shuvalov L.A.: Modern Crystallography IV, Physical Properties of Crystals. Springer, Berlin (1988)

    Google Scholar 

  18. Simmons G., Wang H.: Single Crystal Elastic Constants and Calculated Aggregate Properties. Massachusetts Institute of Technology, MIT Press, Cambridge (1971)

    Google Scholar 

  19. Steigmann D.J.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8, 497–506 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebbing, V., Schröder, J. & Neff, P. Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies. Arch Appl Mech 79, 651–657 (2009). https://doi.org/10.1007/s00419-008-0286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0286-6

Keywords

Navigation