Skip to main content
Log in

Free vibration analysis of elastic rods using global collocation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the performance of a novel global collocation method for the eigenvalue analysis of freely vibrated elastic structures when either basis or shape functions are used to approximate the displacement field. Although the methodology is generally applicable, numerical results are presented only for rods in which one-dimensional basis functions in the form of a power series, as well as equivalent Lagrange, Bernstein or Chebyshev polynomials are used. The new feature of the proposed methodology is that it can deal with any type of boundary conditions; therefore, the cases of two Dirichlet as well as one Dirichlet and one Neumann condition were successfully treated. The basic finding of this work is that all these polynomials lead to results identical to those obtained by the power series expansion; therefore, the solution depends on the position of the collocation points only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carey G.F. and Oden J.T. (1983). Finite Elements: A second course, Vol II. Prentice-Hall, Englewoods Cliffs

    Google Scholar 

  2. Çelik I. (2005). Approximate calculation of eigenvalues with the method of weighted residuals-collocation method. Appl. Math. Comput. 160: 401–410

    Article  MATH  MathSciNet  Google Scholar 

  3. Cottrell J.A., Reali A., Bazilevs Y. and Hughes T.J.R. (2006). Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195: 5257–5296

    Article  MATH  MathSciNet  Google Scholar 

  4. Craig R.R. and Bampton M.C.C. (1968). Coupling of sub-structures for dynamic analysis. AIAA J. 6: 1313–1319

    MATH  Google Scholar 

  5. De Boor C. and Swartz B. (1973). Collocation at Gaussian points. SIAM J. Numer. Anal. 10: 582–606

    Article  MATH  MathSciNet  Google Scholar 

  6. Den Hartog J.P. (1985). Mechanical Vibrations. Dover, New York

    Google Scholar 

  7. Finlayson B.A. (1972). The Method of Weighted Residuals and Variational Principles. Academic, New York

    MATH  Google Scholar 

  8. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol.26, SIAM, Philadelphia, Pennsylvania (ISBN 0-89871-023-5) (1977)

  9. Guyan R.J. (1965). Reduction of stiffness and mass matrices. AIAA J. 3: 380

    Article  Google Scholar 

  10. Hughes T.J.R., Cottrell J.A. and Bazilevs Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  11. Inoue K., Kikuchi Y. and Masuyama T. (2005). A NURBS finite element method for product shape design. J. Eng. Des. 16(2): 157–174

    Article  Google Scholar 

  12. Irons B.M. (1965). Structural eigenvalue problems-elimination of unwanted variables. AIAA J. 3: 961–962

    Google Scholar 

  13. Lapidus L. and Pinder G.F. (1999). Numerical Solution of Differential Equations in Science and Engineering. Wiley, New York

    MATH  Google Scholar 

  14. Mote C.D. (1971). Local-global finite element. Int. J. Numer. Methods Eng. 3: 565–574

    Article  MATH  MathSciNet  Google Scholar 

  15. Piegl L. and Tiller W. (1999). The NURBS Book, 2nd edn. Springer, Berlin

    Google Scholar 

  16. Press W.H., Flannery B.P., Teukolsky S.A. and Vetterling W.T. (1989). Numerical Recipes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Provatidis C.G. (2006). Free vibration analysis of two-dimensional structures using Coons-patch macroelements. Finite Elem. Anal. Des. 42(6): 518–531

    Article  Google Scholar 

  18. Provatidis C.G. (2006). Transient elastodynamic analysis of two-dimensional structures using Coons-patch macroelements. Int. J. Solids Struct. 43(22–23): 6688–6706

    Article  MATH  Google Scholar 

  19. Provatidis C.G. (2006). Three-dimensional Coons’ macroelements: application to eigenvalue and scalar wave propagation problems. Int. J. Numer. Methods Eng. 65(1): 111–134

    Article  MATH  Google Scholar 

  20. Rayleigh, J.W.S.: The Theory of Sound, Vols. 1 and 2. Dover, New York (enlarged from 1894 edition) (1945)

  21. Schramm U. and Pilkey W.D. (1993). The coupling of geometric descriptions and finite element using NURBS—a study in shape optimization. Finite Elem. Anal. Des. 15: 11–34

    Article  MATH  Google Scholar 

  22. Stroud A.H. and Secrest D. (1966). Gaussian Quadrature Formulas. Prentice-Hall, London

    MATH  Google Scholar 

  23. Szabó, B.A., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

  24. Zienkiewicz O.C. (1977). The Finite Element Method, 3rd edn. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Provatidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provatidis, C.G. Free vibration analysis of elastic rods using global collocation. Arch Appl Mech 78, 241–250 (2008). https://doi.org/10.1007/s00419-007-0159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0159-4

Keywords

Navigation