Skip to main content
Log in

Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Aminoglycoside ototoxicity results in permanent loss of the sensory hair cells in the mammalian cochlea. It usually begins at the basal turn causing high-frequency hearing loss. Here we describe previously unreported resistance of hair cells to neomycin ototoxicity in the extreme basal (hook) region of the developing cochlea of the C57BL/6 mouse. Organ of Corti explants from mice at postnatal day 3 were incubated (37 °C, 5% CO2) in normal culture medium for 19.5 h prior to and after exposure to neomycin (1 mM, 3 h). To study neomycin uptake in the hair cells, cochlear explants were incubated with Neomycin Texas-red (NTR) conjugate. As expected, exposure to neomycin significantly reduced the survival of inner (IHC) and outer hair cells (OHC). IHC survival rate was high in the apical segment and low in the basal segment. OHC were well preserved in the apical and hook regions, with substantial OHC loss in the basal segment. The NTR uptake study demonstrated that the high survival rate in the extreme basal turn OHC was associated with low NTR uptake. Treatment with a calcium chelator (BAPTA), which disrupts the opening of mechanoelectrical (MET) transduction channels, abolished or reduced NTR uptake in the hair cells throughout the cochlea. This confirmed the essential role of MET channels in neomycin uptake and implied that the transduction channels could be impaired in the hook region of the developing mouse cochlea, possibly as a result of the cadherin 23 mutation responsible for the progressive deafness in C57BL/6 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AF, Marcotti W, Kros CJ, Richardson GP (2011) Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 6(4):e19183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PloS One 6(7):e22347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7(6):985–994

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Hardisty-Hughes RE, Mburu P (2008) Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 9(4):277–290

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung ELM, Derfler BH, Duggan A (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432(7018):723

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R (2016) Is TMC1 the hair cell mechanotransducer channel? Biophys J 111:3–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurotol 5(1):3–22

    Article  CAS  Google Scholar 

  • Hashino E, Shero M (1995) Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res 704(1):135–140

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw H, Feldman W (1945) Streptomycin in treatment of clinical tuberculosis: a preliminary report. Proc Staff Meet Mayo Clin 20:313–318

    Google Scholar 

  • Johnson KR, Zheng QY, Noben-Trauth K (2006) Strain background effects and genetic modifiers of hearing in mice. Brain Res 1091(1):79–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karasawa T, Steyger PS (2011) Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol 3(9):879–886

    Article  CAS  Google Scholar 

  • Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91

    Article  PubMed  CAS  Google Scholar 

  • Kendall A, Schacht J (2014) Disparities in auditory physiology and pathology between C57BL/6J and C57BL/6N substrains. Hear Res 318:18–22

    Article  PubMed  Google Scholar 

  • Leake PA, Kuntz AL, Moore CM, Chambers PL (1997) Cochlear pathology induced by aminoglycoside ototoxicity during postnatal maturation in cats. Hear Res 113:117–132

    Article  PubMed  CAS  Google Scholar 

  • Lee J-H, Park C, Kim S-J, Kim H-J, Oh G-S, Shen A, So H-S, Park R (2013) Different uptake of gentamicin through TRPV1 and TRPV4 channels determines cochlear hair cell vulnerability. Exp Mol Med 45(3):e12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lelli A, Asai Y, Forge A, Holt JR, Geleoc GS (2009) Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophys 101(6):2961–2973

    Article  Google Scholar 

  • Li H, Steyger PS (2011) Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells. Sci Rep 1:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CYS (2017) Purinergic signalling and aminoglycoside ototoxicity: the role of P1 and P2 receptors. PhD Thesis, The University of Auckland

  • Löwenheim H, Kil J, Gültig K, Zenner H (1999) Determination of hair cell degeneration and hair cell death in neomycin treated cultures of the neonatal rat cochlea. Hear Res 128(1):16–26

    Article  PubMed  Google Scholar 

  • Marcotti W, Van Netten SM, Kros CJ (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567(2):505–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcotti W, Corns LF, Desmonds T, Kirkwood NK, Richardson GP, Kros CJ (2014) Transduction without tip links in cochlear hair cells is mediated by ion channels with permeation properties distinct from those of the mechano-electrical transducer channel. J Neurosci 34(16):5505–5514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazurek B, Amarjargal N, Haupt H, Gross J (2006) High potassium concentrations protect inner and outer hair cells in the newborn rat culture from ischemia-induced damage. Hear Res 215:31–38

    Article  PubMed  CAS  Google Scholar 

  • Momiyama J, Hashimoto T, Matsubara A, Futai K, Namba A, Shinkawa H (2006) Leupeptin, a calpain inhibitor, protects inner ear hair cells from aminoglycoside ototoxicity. Tohoku J Exp Med 209(2):89–97

    Article  PubMed  CAS  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35(1):21–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osborne M, Comis S, Pickles J (1988) Further observations on the fine structure of tip links between stereocilia of the guinea pig cochlea. Hear Res 35(1):99–108

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27(50):6407–6418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poirrier A, Pincemail J, Van Den Ackerveken P, Lefebvre P, Malgrange B (2010) Oxidative stress in the cochlea: an update. Curr Med Chem 17(30):3591–3604

    Article  PubMed  CAS  Google Scholar 

  • Richardson GP, Russell IJ (1991) Cochlear cultures as a model system for studying aminoglycoside induced ototoxicity. Hear Res 53(2):293–311

    Article  PubMed  CAS  Google Scholar 

  • Rybak L, Ramkumar V (2007) Ototoxicity Kidney Int 72(8):931–935

    Article  PubMed  CAS  Google Scholar 

  • Sha S-H, Taylor R, Forge A, Schacht J (2001) Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear Res 155(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Stepanyan RS, Indzhykulian AA, Vélez-Ortega AC, Boger ET, Steyger PS, Friedman TB, Frolenkov GI (2011) TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells. J Assoc Res Otolaryngol 12(6):729–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyger P, Peters S, Rehling J, Hordichok A, Dai C (2003) Uptake of gentamicin by bullfrog saccular hair cells in vitro. J Assoc Res Otolaryngol 4:565–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vu AA, Nadaraja GS, Huth ME, Luk L, Kim J, Chai R, Ricci AJ, Cheng AG (2013) Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PloS One 8(1):e54794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waguespack J, Salles FT, Kachar B, Ricci AJ (2007) Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J Neurosci 27(50):13890–13902

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Van De Water T, Bonny C, De Ribaupierre F, Puel J, Zine A (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23(24):8596–8607

    Article  PubMed  CAS  Google Scholar 

  • Wu WJ, Sha SH, McLaren JD, Kawamoto K, Raphael Y, Schacht J (2001) Aminoglycoside ototoxicity in adult CBA, C57BL and BALB mice and the Sprague–Dawley rat. Hear Res 158(1–2):165–178

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281(1–2):28–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y-D, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93(26):15469–15474

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Auckland Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly C. Y. Lin.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S.C.Y., Thorne, P.R., Housley, G.D. et al. Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea. Histochem Cell Biol 150, 281–289 (2018). https://doi.org/10.1007/s00418-018-1683-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-018-1683-8

Keywords

Navigation