Skip to main content
Log in

Characterization of mast cell populations using different methods for their identification

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mast cells are ubiquitous throughout the human tissues and play an essential role in physiology and pathology. For evaluation of patients with pathological conditions, mast cells were primarily detected using metachromatic staining with toluidine blue. In the last decades, the staining arsenal of pathologists was enriched with enzyme histochemical and immunohistochemical methods, and it was established that depending on species and tissue localization mast cells are not similar both in appearance and function. The aim of this study was to characterize different mast cell populations using the up-to-date methods of their identification. We compared standard metachromatic method for mast cells with enzyme histochemical detection of chloroacetyl esterase and with immunohistochemical detection of tryptase and chymase in human and rodent tissues. Combination of these methods allowed us to assay quantitatively mast cell populations in different organs of humans and rodents. Furthermore, we assessed the appropriate implementation of each of these methods for mast cell identification in diagnostic labs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atiakshin DA, Bykov EG (2013) Population characteristics of mucous tissue basocytes in the Mongolian gerbil’s jejunum following the 12-day orbital flight onboard space platform “Foton-M3”. Aviakosm Ekolog Med 47:17–24

    Google Scholar 

  • Atiakshin D, Bykov E (2014) Mast cells of jejunum in mongolian gerbils after space flight. J Anat Histopathol 3:15–27

    Google Scholar 

  • Avtsyn AP, Strukov AI, Fuchs BB (1971) Principles and methods of histo- and cytochemical analysis in pathology. Medizina, Moscow

    Google Scholar 

  • Befus AD, Pearce FL, Gauldie J, Horsewood P, Bienenstock J (1982) Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. J Immunol 128:2475–2480

    CAS  PubMed  Google Scholar 

  • Belanger LF, Hartnett A (1960) Persistent toluidine blue metachromasia. J Histochem Cytochem 8:75

    Article  CAS  PubMed  Google Scholar 

  • Bienenstock J, Befus AD, Pearce F, Denburg J, Goodacre R (1982) Mast cell heterogeneity: derivation and function, with emphasis on the intestine. J Allergy Clin Immunol 70:407–412

    Article  CAS  PubMed  Google Scholar 

  • Buchwalow IB, Boecker W (2010) Immunohistochemistry: basics and methods. Springer, Heidelberg

    Book  Google Scholar 

  • Buchwalow I, Samoilova V, Boecker W, Tiemann M (2011) Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep 1: 28. doi:10.1038/srep00028

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchwalow I, Boecker W, Tiemann M (2015) The contribution of Paul Ehrlich to histochemistry: a tribute on the occasion of the centenary of his death. Virchows Arch 466:111–116

    Article  CAS  PubMed  Google Scholar 

  • Buckley M, Walls AF (2008) Identification of mast cells and mast cell subpopulations. Methods Mol Med 138:285–297

    Article  CAS  PubMed  Google Scholar 

  • Buckley MG, McEuen AR, Walls AF (1999) The detection of mast cell subpopulations in formalin-fixed human tissues using a new monoclonal antibody specific for chymase. J Pathol 189:138–143

    Article  CAS  PubMed  Google Scholar 

  • Bykov VL (2000) Development and heterogeneity of mast cells. Morfologiia 117:86–92

    CAS  PubMed  Google Scholar 

  • Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caughey GH (2016) Mast cell proteases as pharmacological targets. Eur J Pharmacol 778:44–55

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Candussioi L, Decorti G, Klugmann FB, Baldini L (1997) Adriamycin binds to the matrix of secretory granules during mast cell exocytosis. Biotech Histochem 72:111–116

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Travan L, Ribatti D (2015) The phylogenetic profile of mast cells. Methods Mol Biol 1220:11–27

    Article  CAS  PubMed  Google Scholar 

  • da Silva EZ, Jamur MC, Oliver C (2014) Mast cell function: a new vision of an old cell. J Histochem Cytochem 62:698–738

    Article  PubMed  PubMed Central  Google Scholar 

  • de Souza DA Jr, Borges AC, Santana AC, Oliver C, Jamur MC (2015a) Mast cell proteases 6 and 7 stimulate angiogenesis by inducing endothelial cells to release angiogenic factors. PLoS One 10:e0144081

    Article  Google Scholar 

  • de Souza DA Jr, Santana AC, da Silva EZ, Oliver C, Jamur MC (2015b) The role of mast cell specific chymases and tryptases in tumor angiogenesis. Biomed Res Int 2015:142359

    Google Scholar 

  • Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krilis SA, Stevens RL (2014) Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. Adv Immunol 122:211–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak AM (1989) Human mast cells. Adv Anat Embryol Cell Biol 114:1–107

    Article  CAS  PubMed  Google Scholar 

  • Dvorak AM (1992) Basophils and mast cells: piecemeal degranulation in situ and ex vivo: a possible mechanism for cytokine-induced function in disease. Immunol Ser 57:169–271

    CAS  PubMed  Google Scholar 

  • Ehrlich P (1878) Beiträge für Theorie und Praxis der histologischen Färbung. vol Doktor. Leipzig University, Leipzig, p 65

    Google Scholar 

  • Enerback L (1974) Berberine sulphate binding to mast cell polyanions: a cytofluorometric method for the quantitation of heparin. Histochemistry 42:301–313

    Article  CAS  PubMed  Google Scholar 

  • Forsberg E, Kjellen L (2001) Heparan sulfate: lessons from knockout mice. J Clin Invest 108:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber MA, Seliet IA, Ehsan NA, Megahed MA (2014) Mast cells and angiogenesis in wound healing. Anal Quant Cytopathol Histpathol 36:32–40

    PubMed  Google Scholar 

  • Galli SJ (1990) New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest 62:5–33

    CAS  PubMed  Google Scholar 

  • Galli SJ, Tsai M (2008) Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. J Dermatol Sci 49:7–19

    Article  CAS  PubMed  Google Scholar 

  • Hallgren J, Karlson U, Poorafshar M, Hellman L, Pejler G (2000) Mechanism for activation of mouse mast cell tryptase: dependence on heparin and acidic pH for formation of active tetramers of mouse mast cell protease 6. BioChemistry 39:13068–13077

    Article  CAS  PubMed  Google Scholar 

  • Higashi N, Waki M, Sue M, Kogane Y, Shida H, Tsunekawa N, Hasan A, Sato T, Kitahara A, Kasaoka T, Hayakawa Y, Nakajima M, Irimura T (2014) Heparanase-mediated cleavage of macromolecular heparin accelerates release of granular components of mast cells from extracellular matrices. Biochem J 458:291–299

    Article  CAS  PubMed  Google Scholar 

  • Horii Y, Ishikawa N, Nawa Y (1992) Heparin-containing mast cells in the jejunal mucosa of normal and parasitized Mongolian gerbils, Meriones unguiculatus. Int Arch Allergy Immunol 98:415–419

    Article  CAS  PubMed  Google Scholar 

  • Horny HP, Sillaber C, Menke D, Kaiserling E, Wehrmann M, Stehberger B, Chott A, Lechner K, Lennert K, Valent P (1998) Diagnostic value of immunostaining for tryptase in patients with mastocytosis. Am J Surg Pathol 22:1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Irani AM, Schwartz LB (1989) Mast cell heterogeneity. Clin Exp Allergy 19:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kaartinen M, Penttila A, Kovanen PT (1995) Extracellular mast cell granules carry apolipoprotein B-100-containing lipoproteins into phagocytes in human arterial intima. Functional coupling of exocytosis and phagodytosis in neighboring cells. Arterioscler Thromb Vasc Biol 15:2047–2054

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y (1989) Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol 7:59–76

    Article  CAS  PubMed  Google Scholar 

  • Kitamura Y, Oboki K, Ito A (2007) Development of mast cells. Proc Jpn Acad Ser B Phys Biol Sci 83:164–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokkonen JO, Lindstedt KA, Kovanen PT (2003) Role for chymase in heart failure: angiotensin II-dependent or -independent mechanisms? Circulation 107:2522–2524

    Article  PubMed  Google Scholar 

  • Kovanen PT (1991) Mast cell granule-mediated uptake of low density lipoproteins by macrophages: a novel carrier mechanism leading to the formation of foam cells. Ann Med 23:551–559

    Article  CAS  PubMed  Google Scholar 

  • Leskinen MJ, Lindstedt KA, Wang Y, Kovanen PT (2003) Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol 23:238–243

    Article  CAS  PubMed  Google Scholar 

  • Li CY (2001) Diagnosis of mastocytosis: value of cytochemistry and immunohistochemistry. Leuk Res 25:537–541

    Article  CAS  PubMed  Google Scholar 

  • Li WV, Kapadia SB, Sonmez-Alpan E, Swerdlow SH (1996) Immunohistochemical characterization of mast cell disease in paraffin sections using tryptase, CD68, myeloperoxidase, lysozyme, and CD20 antibodies. Mod Pathol 9:982–988

    CAS  PubMed  Google Scholar 

  • Lima HG, Pinke KH, Gardizani TP, Souza-Junior DA, Carlos D, Avila-Campos MJ, Lara VS (2013) Mast cells act as phagocytes against the periodontopathogen Aggregatibacter actinomycetemcomitans. J Periodontol 84:265–272

    Article  CAS  PubMed  Google Scholar 

  • Lojda Z, Gossrau R, Schiebler T (1976) Enzyme histochemistry. A laboratory manual. Springer, Berlin

    Google Scholar 

  • Malone DG, Irani AM, Schwartz LB, Barrett KE, Metcalfe DD (1986) Mast cell numbers and histamine levels in synovial fluids from patients with diverse arthritides. Arthritis Rheum 29:956–963

    Article  CAS  PubMed  Google Scholar 

  • Melo FR, Vita F, Berent-Maoz B, Levi-Schaffer F, Zabucchi G, Pejler G (2014) Proteolytic histone modification by mast cell tryptase, a serglycin proteoglycan-dependent secretory granule protease. J Biol Chem 289:7682–7690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  • Moloney WC, McPherson K, Fliegelman L (1960) Esterase activity in leukocytes demonstrated by the use of naphthol AS-D chloroacetate substrate. J Histochem Cytochem 8:200–207

    Article  CAS  PubMed  Google Scholar 

  • Nawa Y, Horii Y, Okada M, Arizono N (1994) Histochemical and cytological characterizations of mucosal and connective tissue mast cells of Mongolian gerbils (Meriones unguiculatus). Int Arch Allergy Immunol 104:249–254

    Article  CAS  PubMed  Google Scholar 

  • Omelyanenko N, Slutsky L, Mironov S (2009) Connective tissue (histophysiology and biochemistry). Izvestia, Moscow

    Google Scholar 

  • Romeis B (2010) Mikroskopische technik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Ronnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem 60:950–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz LB (1987) Mediators of human mast cells and human mast cell subsets. Ann. Allergy 58:226–235

    CAS  Google Scholar 

  • Schwartz LB, Bradford TR (1986) Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J Biol Chem 261:7372–7379

    CAS  PubMed  Google Scholar 

  • Schwartz LB, Bradford TR, Irani AM, Deblois G, Craig SS (1987) The major enzymes of human mast cell secretory granules. Am Rev Respir Dis 135:1186–1189

    CAS  PubMed  Google Scholar 

  • Seldin DC, Adelman S, Austen KF, Stevens RL, Hein A, Caulfield JP, Woodbury RG (1985a) Homology of the rat basophilic leukemia cell and the rat mucosal mast cell. Proc Natl Acad Sci USA 82:3871–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seldin DC, Austen KF, Stevens RL (1985b) Purification and characterization of protease-resistant secretory granule proteoglycans containing chondroitin sulfate di-B and heparin-like glycosaminoglycans from rat basophilic leukemia cells. J Biol Chem 260:11131–11139

    CAS  PubMed  Google Scholar 

  • Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    CAS  PubMed  Google Scholar 

  • Sridharan G, Shankar AA (2012) Toluidine blue: a review of its chemistry and clinical utility. J Oral Maxillofac Pathol 16:251–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefanov IS, Vodenicharov AP, Tsandev NS, Sevrieva D (2016) Histochemical study of heparin-positive mast cells in the terminal part of porcine ductus choledochus and papilla duodeni major. Anat Histol Embryol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Succar J, Douaiher J, Lancerotto L, Li Q, Yamaguchi R, Younan G, Pejler G, Orgill DP (2014) The role of mouse mast cell proteases in the proliferative phase of wound healing in microdeformational wound therapy. Plast Reconstr Surg 134:459–467

    Article  CAS  PubMed  Google Scholar 

  • Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22

    Article  CAS  PubMed  Google Scholar 

  • Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33

    Article  CAS  PubMed  Google Scholar 

  • Thiede A, Muller-Hermelink HK, Sonntag HG, Müller-Ruchholtz W, Leder LD (1971) On the origin of tissue mast cells. Beitr Pathol 143:172–182

    CAS  PubMed  Google Scholar 

  • Valchanov KP, Proctor GB (1999) Enzyme histochemistry of tryptase in stomach mucosal mast cells of the mouse. J Histochem Cytochem 47:617–622

    Article  CAS  PubMed  Google Scholar 

  • Welle M (1997) Development, significance, and heterogeneity of mast cells with particular regard to the mast cell-specific proteases chymase and tryptase. J Leukoc Biol 61:233–245

    CAS  PubMed  Google Scholar 

  • Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14:478–494

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm M, King B, Silverman AJ, Silver R (2000) Gonadal steroids regulate the number and activational state of mast cells in the medial habenula. Endocrinology 141:1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Wong E, Morgan EW, MacDonald DM (1982) The chloroacetate esterase reaction for mast cells in dermatopathology: a comparison with metachromatic staining methods. Acta Derm Venereol 62:431–434

    CAS  PubMed  Google Scholar 

  • Xia HZ, Kepley CL, Sakai K, Chelliah J, Irani AM, Schwartz LB (1995) Quantitation of tryptase, chymase, Fc epsilon RI alpha, and Fc epsilon RI gamma mRNAs in human mast cells and basophils by competitive reverse transcription-polymerase chain reaction. J Immunol 154:5472–5480

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Denis Morozow for perfect technical assistance and other colleagues from the immunohistology laboratory for sharing probes and reagents.

Author contributions

A.D. and I.B. designed experiments, analyzed and interpreted results, and wrote the manuscript, whereas all the authors contributed to its revision; V.S. did immunohistochemistry; W.B. analyzed and interpreted results; M.T. directed the study and contributed to financial support the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Buchwalow.

Ethics declarations

Human tissue probes were collected from the archives of the Department of Pathology of the University of Muenster (WB). Informed consent was obtained from all subjects. The study was performed in accordance with the principles of World Medical Association Declaration of Helsinki “Ethical Principles for Medical Research Involving Human Subjects”. All experimental protocols were approved by the Institutional Review Board of the Institute for Hematopathology, Hamburg, Germany.

Tissue probes from experimental animals were performed in accordance with the Helsinki Declaration, The Guiding Principles in the Care and Use of Animals, German law (Tierschutzgesetz BGBl. I,S. 1206, Revision 2006), EEC directives 86/609/EEC and approved by the Institutional Review Board of the Institute for Hematopathology, Hamburg, Germany.

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiakshin, D., Samoilova, V., Buchwalow, I. et al. Characterization of mast cell populations using different methods for their identification. Histochem Cell Biol 147, 683–694 (2017). https://doi.org/10.1007/s00418-017-1547-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1547-7

Keywords

Navigation