Skip to main content

Advertisement

Log in

Optimized protocol for immunostaining of experimental GFP-expressing and human hearts

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Morphological and histochemical analysis of the heart is fundamental for the understanding of cardiac physiology and pathology. The accurate detection of different myocardial cell populations, as well as the high-resolution imaging of protein expression and distribution, within the diverse intracellular compartments, is essential for basic research on disease mechanisms and for the translatability of the results to human pathophysiology. While enormous progress has been made on the imaging hardware and methods and on biotechnological tools [e.g., use of green fluorescent protein (GFP), viral-mediated gene transduction] to investigate heart cell structure and function, most of the protocols to prepare heart tissue samples for analysis have remained almost identical for decades. We here provide a detailed description of a novel protocol of heart processing, tailored to the simultaneous detection of tissue morphology, immunofluorescence markers and native emission of fluorescent proteins (i.e., GFP). We compared a variety of procedures of fixation, antigen unmasking and tissue permeabilization, to identify the best combination for preservation of myocardial morphology and native GFP fluorescence, while simultaneously allowing detection of antibody staining toward sarcomeric, membrane, cytosolic and nuclear markers. Furthermore, with minimal variations, we implemented such protocol for the study of human heart samples, including those already fixed and stored with conventional procedures, in tissue archives or bio-banks. In conclusion, a procedure is here presented for the laboratory investigation of the heart, in both rodents and humans, which accrues from the same tissue section information that would normally require the time-consuming and tissue-wasting observation of multiple serial sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAV9:

Adeno-associated virus serotype 9

α/βMyHC:

α/β-Myosin Heavy Chain

BSA:

Bovine serum albumin

CHMP2B:

Charged multivesicular body protein 2B

Cx43:

Connexin-43

EGFP:

Enhanced green fluorescent protein

FF-PE:

Formalin-fixed paraffin-embedded

FP:

Fluorescent protein

GFP:

Green fluorescent protein

HHT:

Heterotopic heart transplant

IF:

Immunofluorescence

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

SMA:

Smooth muscle actin

WT:

Wild type

References

  • Ausoni S, Zaglia T, Dedja A, Di Lisi R, Seveso M, Ancona E, Thiene G, Cozzi E, Schiaffino S (2005) Host-derived circulating cells do not significantly contribute to cardiac regeneration in heterotopic rat heart transplants. Cardiovasc Res 68(3):394–404

    Article  CAS  PubMed  Google Scholar 

  • Bish LT, Morine K, Sleeper MM, Sanmiguel SJ, Wu D, Gao G, Wilson JM, Sweeney HL (2008a) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19(12):1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E, Arndt J, Reynolds C, Davison E, Sanmiguel J, Wu D, Gao G, Wilson JM, Sweeney HL (2008b) Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 16(12):1953–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormo M, Remington SJ (1997) Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc Natl Acad Sci USA 94(6):2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callis G (2010) Glutaraldehyde-induced autofluorescence. Biotech Histochem 85(4):269

    Article  PubMed  Google Scholar 

  • Chalfie M, Kain SR (2005) Green fluorescent protein: properties, applications and protocols, 2nd edn. Wiley, Haboken, pp 407–421

    Book  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Sereti KI, Wu BM, Ardehali R (2015) Translational aspects of cardiac cell therapy. J Cell Mol Med 19(8):1757–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32(5):1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Dedja A, Dall’Olmo L, Cadrobbi R, Baldan N, Fante F, Calabrese F, Rigotti P, Ferraresso M, Delriviere L, Cozzi E, Ancona E (2005) Heterotopic cardiac xenotransplantation in rodents: report of a refined technique in a hamster-to-rat model. Microsurgery 25(3):227–234

    Article  PubMed  Google Scholar 

  • Dedja A, Zaglia T, Dall’Olmo L, Chioato T, Thiene G, Fabris L, Ancona E, Schiaffino S, Ausoni S, Cozzi E (2006) Hybrid cardiomyocytes derived by cell fusion in heterotopic cardiac xenografts. FASEB J 20(14):2534–2536

    Article  CAS  PubMed  Google Scholar 

  • Del Castillo P, Ar Llorente, Stockert JC (1989) Influence of fixation, exciting light and section thickness on the primary fluorescence of samples for microfluorometric analysis. Basic Appl Histochem 33(3):251–257

    PubMed  Google Scholar 

  • Diekmann H, Kalbhen P, Fischer D (2015) Characterization of optic nerve regeneration using transgenic zebrafish. Front Cell Neurosci 9:118

    PubMed  PubMed Central  Google Scholar 

  • Dixit P, Katare R (2015) Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasulo B, Sullivan W (2014) Live confocal analysis of mutant- and drug-treated Drosophila embryos. Methods Mol Biol 1075:243–255

    Article  PubMed  Google Scholar 

  • Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, Murakami T, Takahashi M, Takahashi R, Hirabayashi M, Ueda M, Miyoshi I, Kasai N, Kobayashi E (2001) Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Biophys Res Commun 286(4):779–785

    Article  CAS  PubMed  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91(26):12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe Y, Hou GR, Lemanski LF (1991) Deep-etching immunogold replica electron microscopy of cytoskeletal elements in cultured hamster heart cells. Anat Rec 229:415–426

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12(12):2625–2635

    CAS  PubMed  Google Scholar 

  • Jockusch H, Eberhard D (2007) Green fluorescent protein as a tracer in chimeric tissues: the power of vapor fixation. Methods Mol Biol 411:145–154

    Article  CAS  PubMed  Google Scholar 

  • Jockusch H, Voigt S, Eberhard D (2003) Localization of GFP in frozen sections from unfixed mouse tissues: immobilization of a highly soluble marker protein by formaldehyde vapor. J Histochem Cytochem 51(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Karussis D, Petrou P, Kassis I (2013) Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci 324(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kuai XL, Ni RZ, Zhou GX, Mao ZB, Zhang JF, Yi N, Liu ZX, Shao N, Ni WK, Wang ZW (2015) Transplantation of mouse embryonic stem cell-derived oligodendrocytes in the murine model of globoid cell leukodystrophy. Stem Cell Res Ther 6(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusser KL, Randall TD (2003) Simultaneous detection of EGFP and cell surface markers by fluorescence microscopy in lymphoid tissues. J Histochem Cytochem 51(1):5–14

    Article  CAS  PubMed  Google Scholar 

  • Kyosola K, Partanen S, Korkala O, Merikallio E, Penttila O, Siltanen P (1976) Fluorescence histochemical and electron-microscopical observations on the innervation of the atrial myocardium of the adult human heart. Virchows Arch A Pathol Anat Histol 371(2):101–119

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang G, Ngo N, Zhao X, Kain SR, Huang CC (1997) Deletions of the Aequorea victoria green fluorescent protein define the minimal. J Biol Chem 272(45):28545–28549

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Soto AR, Oakley DH, Wichterle H, Stein J, Doetsch FK, Henderson CE (2014) Stem cells in the nervous system. Am J Phys Med Rehabil 93(11 Suppl 3):S132–S144

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsunari H, Kobayashi T, Watanabe M, Umeyama K, Nakano K, Kanai T, Matsuda T, Nagaya M, Hara M, Nakauchi H, Nagashima H (2014) Transgenic pigs with pancreas-specific expression of green fluorescent protein. J Reprod Dev 60(3):230–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles EL, Gorman CO’, Zhao J, Samuel M, Walters E, Yi YJ, Sutovsky M, Prather RS, Wells KD, Sutovsky P (2013) Transgenic pig carrying green fluorescent proteasomes. Proc Natl Acad Sci USA 110(16):6334–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983):664–668

    Article  CAS  PubMed  Google Scholar 

  • Noonberg SB, Weiss TL, Garovoy MR, Hunt CA (1992) Characterization and minimization of cellular autofluorescence in the study of oligonucleotide uptake using confocal microscopy. Antisense Res Dev 2(4):303–313

    Article  CAS  PubMed  Google Scholar 

  • Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407(3):313–319

    Article  CAS  PubMed  Google Scholar 

  • Ormo M, Ab Cubitt, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  PubMed  Google Scholar 

  • Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, Patel R, Allen JR, Howe ES, Piszczek G, Hess HF, Davidson MW, Wang Y, Looger LL (2015) Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12(3):215–218 4 p following 218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peddie CJ, Blight K, Wilson E, Melia C, Marrison J, Carzaniga R, Domart MC, O’Toole P, Larijani B, Collinson LM (2014) Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  CAS  PubMed  Google Scholar 

  • Schikorski T (2010) Pre-embedding immunogold localization of antigens in mammalian brain slices. Methods Mol Biol 2010(657):133–144

    Article  Google Scholar 

  • Shi YC, Seib PA, Lu SP (1991) Leaching of amylose from wheat and corn starch. Adv Exp Med Biol 302:667–686

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou M, Wang X, Qin G, Weintraub NL, Tang Y (2014) Assessing in vitro stem-cell function and tracking engraftment of stem cells in ischaemic hearts by using novel iRFP gene labelling. J Cell Mol Med 18(9):1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JM, Hsueh YC, Ch’ang HJ, Luo CY, Wu LW, Nakauchi H, Hsieh PC (2015) Circulating cells contribute to cardiomyocyte regeneration after injury. Circ Res 116(4):633–641

    Article  CAS  PubMed  Google Scholar 

  • Yang TT, Kain SR, Kitts P, Kondepudi A, Yang MM, Youvan DC (1996) Dual color microscopic imagery of cells expressing the green fluorescent protein and a red-shifted variant. Gene 173:19–23

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Ohmi M, Murata S, Nakame T, Tabayashi K, Mohri H (1995) Proposal of a working left heart model with a heterotopic transplantation technique in rats. J Heart Lung Transplant 14(4):706–712

    CAS  PubMed  Google Scholar 

  • Zaglia T, Milan G, Ruhs A, Franzoso M, Bertaggia E, Pianca N, Carpi A, Carullo P, Pesce P, Sacerdoti D, Sarais C, Catalucci D, Krüger M, Mongillo M, Sandri M (2014) Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest 124(6):2410–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefano Schiaffino for critical reading of the manuscript and support to the experiments; Drs Emanuele Cozzi, Arben Dedja and Luigi Dall’Olmo for heterotopic heart transplantation. We thank Dr Camillo Barbisan for assistance on medical legal issues inherent in the use of human samples. We are also grateful to Alessandra Dubrovich and Emilio Bigon for technical assistance. This work was supported by University of Padova (Progetto Giovani Studiosi 2010, contract: GRIC101133) to Tania Zaglia, Telethon-Italy (GGP11224) to Marco Mongillo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Zaglia.

Ethics declarations

Conflict of interest

The authors declare no conflicting of interest.

Additional information

Simonetta Ausoni and Marco Mongillo have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Effects of the combined ‘Microwave+Triton’ treatment on tissue autofluorescence. (a–b) Hearts from GFP+ (a) and WT (b) rats were fixed by PFA perfusion. Ten µm heart sections underwent ‘microwave+Triton’ unmasking procedure and were imaged at the fluorescence microscopy using the same acquisition parameters. The images evidence that our protocol significantly blunts tissue autofluorescence without interfering with the GFP signal. (TIFF 3480 kb)

Figure 2

Secondary antibody staining in GFP positive mouse and rat heart sections. (a–c) Ventricular sections from GFP positive mice (a) and rats (b–c) underwent ‘microwave+Triton’ unmasking procedure, and were treated with 1X PBS, supplemented with 1% BSA and 1% Triton-X100 without a primary antibody, followed by incubation with anti-rabbit (a-b) and anti-mouse (c) secondary antibodies. (TIFF 14639 kb)

Figure 3

Validation of the new immunofluorescence protocol for the analysis of GFP positive mouse heart. (a–d) Immunofluorescence and microscope analysis on serial ventricular sections which underwent: no treatment (NT); microwave (Mw); Triton (Tr) or ‘microwave+Triton’ (Mw/Tr) treatments. Heart sections were stained with antibodies to: α/β-Myosin Heavy Chain (α/β-MHC) (a); desmin (b); GATA-4 (c); connexin-43 (d, cx-43). The signal of the native EGFP fluorescence upon the combination of Mw/Tr treatments is shown in the right panels (green signal). The white arrow in (c) evidences a GATA-4 positive cardiomyocyte nucleus. (TIFF 17504 kb)

Figure 4

Tissue morphology in heart sections from experimental models processed with the new immunofluorescence protocol. (a–d) Haematoxyln-eosin staining was performed in ventricular sections from heterotopic heart transplants (a–b) and hearts infected with AAV9-GFP-U6-CHMP2Bsh (c–d), before (a and c) and after (b and d) ‘microwave+Triton’ treatment. (TIFF 16867 kb)

Figure 5

Secondary antibody staining in human heart sections. (a–b) FF-PE heart sections underwent ‘microwave+Triton’ treatment and incubation with Cy3 conjugated anti-mouse (a), 488-conjugated anti-rabbit (b) and Cy3-conjugated anti-rabbit secondary antibodies, without previous incubation with specific primary antibodies. Sections were analyzed at the fluorescence microscopy. (TIFF 12676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaglia, T., Di Bona, A., Chioato, T. et al. Optimized protocol for immunostaining of experimental GFP-expressing and human hearts. Histochem Cell Biol 146, 407–419 (2016). https://doi.org/10.1007/s00418-016-1456-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1456-1

Keywords

Navigation